Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2020, no. 3  /  STUDY OF PHYSICAL PROCESSES IN THE DIRECT CURRENT LINK OF THE LOADING-BACK SCHEME OF ASYNCHRONOUS MACHINES

STUDY OF PHYSICAL PROCESSES IN THE DIRECT CURRENT LINK OF THE LOADING-BACK SCHEME OF ASYNCHRONOUS MACHINES


Viktor V. Kharlamov, Denis I. Popov, Roman V. Sergeev

DOI: 10.47026/1810-1909-2020-3-141-149

Key words

mathematical modeling, test complex, power determination, asynchronous motor, loading-back method, DC link, test scheme.

Annotation

The article notes the tendency of introducing asynchronous engines, entailing the necessity to introduce the equipment which is intended to carry out maintenance, repair and acceptance check-outs. The general part of test circuits for asynchronous motors by the loading-back method with two controlled inverters is emphasized. The mathematical model of similar schemes’ functioning is shown. The article gives the results obtained by mathematic simulation of physical processes in the direct current link in the loading-back scheme for asynchronous machines Significant ripple voltage of constant voltage and DC in these circuits is noted. The issue of measuring power in the DC link passing through one inverter to the test engine and through another inverter from the load generator is considered. The authors carried out calculation of the capacities mentioned in the steady state modes for asynchronous machines with nominal power of 0.37 kW, 5.5 kW and 250 kW at different values of capacitor capacitance included in the DC link. Basing on the results of calculations, the authors found the dependence between the relative value of the procedural error in determining power in the DC link by the product of the current values of pulsed voltages and current. The current value from the product of instantaneous values of voltage and current at some time interval was taken as the true value of power. It is shown that at the capacitor capacity above some critical value this procedural error does not exceed 0.9% at the nominal power of the test engines 0.37 kW; 0.3% – at the power of 5.5 kW; 0.2% – at the power of 250 kW. This error increases dramatically when capacitor capacitance decreases. It is shown that the value of the capacitance corresponding to the inflection of the considered dependence approximately corresponds to the value necessary for limiting ripple voltage in the DC link of up to 600 V.

Refernces

  1. Avilov V.D., Popov D.I., Litvinov A.V. Metodika opredeleniya poter’ v dvukhzvennykh preobrazovatelyakh chastoty v sostave stenda dlya ispytaniya asinkhronnykh dvigatelej metodom vzaimnoj nagruzki [Methodology for assigning losses in two-element frequency converter in induction motor test rig]. Izvestija Transsiba, 2014, 1(17), pp. 2–8.
  2. Bejerlejn E.V., Tsukublin A.B., Rapoport O.L. Skhema ispytaniya tyagovykh chastotno-reguliruemykh asinkhronnykh elektrodvigatelei [Scheme of testing of traction frequency-controlled induction motors]. Izvestiya vuzov. Elektromekhanika, 2006, no. 2, pp. 46–48.
  3. Katsman M.M. Spravochnik po ehlektricheskim mashinam [Directory of electric machines]. Moscow,Akademiya Publ., 2005, 480 p.
  4. Avilov V.D., Popov D.I., Litvinov A.V. Skhema dlya opredeleniya ehlektricheskoi moshch­nosti, potreblyaemoi asinkhronnymi dvigatelyami pri ispytanii ikh metodom vzaimnoi nagruzki [Sche­me for determining the electrical power consumed by asynchronous motors when testing them by mutual load method]. Patent RF, no. 143346, 2014.
  5. Avilov V.D., Kharlamov V.V., Popov D.I., Litvinov A.V. Skhema ispytanii asinkhronnykh dvigatelei metodom ikh vzaimnoi nagruzki [Scheme of testing of induction motors by their mutual load]. Patent RF, no. 145998, 2014.
  6. Kurbasov A.S., Targonskij I.L., Dolgosheev Eh.A. Ustroystvo dlya ispytaniy beskollektor­nykh ehlektricheskikh mashin peremennogo toka [Facility testing AC brushless electric machines]. Patent RF, no. 2200960, 2001.
  7. Avilov V.D., Volodin A.I., Dankovtsev V.T., Luk’yanchenko, Pan’kin Ye.V. Sposob ispy­ta­niya asinhronnykh ehlektrodvigatelei metodom ih vzaimnoi nagruzki [Back-to-back test method for asynchronous motors]. Patent RF, no. 2433419, 2010.
  8. Kozlov L.G., Osipov S.S., Feoktistov V.P., Konovalov V.A. Stend dlya ispytaniy asinkhron­nogo tyagovogo ehlektrodvigatelya [Stand for testing induction traction electromotor]. Patent RF, no. 99186, 2010.
  9. Popov D.I. Nauchnye osnovy sozdaniya energoeffektivnykh metodov i sredstv ispytanii elektri­cheskikh mashin [Scientific bases of creation of energy efficient methods and means of testing of electric machines]. Omsk, 2019, 175 p.
  10. Firago B.I., Pavlyachik L.B. Reguliruemye elektroprivody peremennogo toka [Adjustable AC drives]. Minsk, Tekhnoperspektiva Pubbl., 2006, 363 p.
  11. Kharlamov V.V., Popov D.I. Mathematical modeling of physical processes in the complex for testing of induction machines. In: MATEC Web Conf., vol. 239, 27 November 2018, p. 01055.
  12. Smarandescu I.D., Marinescu R.-F., Nicolae M.-S. et al. Considerations on designing and simulation of an induction motor drive system for an electric locomotive. Proc. of the 2017 Intern. Conf. on Modern Power Systems (MPS), June 6–9, 2017. Cluj-Napoca, 2017. DOI:1109/MPS.2017.7974436.
  13. Struharňanský Ľ., Vittek J., Makyš P. et al. Vector control techniques for traction drive with induction machines – comparison. Procedia Engineering, 2017, vol. 192, pp. 851–856. DOI: 10.1016/j.proeng.2017.06.147.

Download the full article