Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2021, no. 1. Topic of this Issue: Electrical Technology and Power Engineering  /  ACCURACY ESTIMATION FOR OPERATING CHARACTERISTICS NEUROMODELING OF THE OVERCURRENT PROTECTION IN A THREE PHASE MAINS

ACCURACY ESTIMATION FOR OPERATING CHARACTERISTICS NEUROMODELING OF THE OVERCURRENT PROTECTION IN A THREE PHASE MAINS

Sergey O. Ivanov, Aleksandr A. Lariukhin, Maxim V. Nikandrov, Leonid A. Slavutskii

DOI: 10.47026/1810-1909-2021-1-68-77

Key words

neural network modeling, elementary perceptron, overcurrent protection, three-phase electrical mains.

Annotation

Modern electric power facilities-stations and high-voltage substations have become digital objects with the active use of high-speed local networks directly involved in the technological process. Management, analysis and control of information exchange in the digital substation of the power system require the development of new tools and approaches. For these purposes, machine learning methods can be used, in particular, the artificial neural networks. The paper presents the results of neural network modeling of the operation of the overcurrent protection – as a variant of the information exchange analysis. An elementary perceptron is used as a neural network with the simplest structure. The optimized structure of the neural network and estimates of the accuracy of the neural network algorithm are given, depending on the size of the training sample (from 1000 to 50000 records), the number of training epochs. It is shown that the analysis of the neural network algorithm errors encountered during testing of the neural network enables to estimate the threshold (the setting value) current protection depending on the size of the training sample. It is found that the recognition of the protection trigger threshold in neural network modeling is violated only when the all three phase currents in electrical mains are close to the threshold. The possibilities of improving the proposed approach and its use for detecting anomalies in the information exchange and operation of secondary equipment of digital substations of the power system are discussed.

References

  1. Koshcheev M.I., Slavutskiy A.L., Slavutskii L.A. Prostyye neyrosetevyye algoritmy dlya volnovogo metoda opredeleniya mesta povrezhdeniya elektroseti [Simple neural network algorithms for the wave method of fault location in power networks]. Vestnik Chuvashskogo universiteta, 2019, no. 3, pp. 110–118.
  2. Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika [Neural networks. Theory and practice]. Moscow, Goryachaya liniya Telekom Publ., 2001, 382 p.
  3. Lachugin V.F., Panfilov D.I., Smirnov A.N. Realizatsiya volnovogo metoda opredeleniya mesta povrezhdeniya na liniyakh elektroperedachi s ispol’zovaniem statisticheskikh metodov analiza dannykh [Implementation of the wave method of determining the location of damage on power lines using statistical data analysis methods]. Izvestiya RAN. Energetik, 2013, no. 6, pp. 137-146.
  4. Lyamets Yu.Ya., Nudel’man G.S., Pavlov A.O., Efimov E.B., Zakon’shek Ya. Raspoznavaemost’ povrezhdenii elektroperedachi, ch. 1,2,3 [Detectability of power transmission damage]. Elektrichestvo, 2001, no. 2, pp. 16–23; no. 3, pp. 16–24; no. 12, pp. 9–22.
  5. Slavutskii A.L, Pryanikov V.S., Slavutskii L.A. Modelirovanie perekhodnykh rezhimov uzla nagruzki s trekhobmotochnym transformatorom na raznykh urovnyakh napryazheniya [Simulation of transient modes of a load node with a three-winding transformer at different voltage levels]. Elektrotekhnika, 2017, no. 7, pp. 20–24.
  6. Bhattacharya B., Sinha А. Intelligent Fault Analysis in Electrical Power Grids. In: IEEE 29th Conf. on Tools with Artificial Intelligence (ICTAI). Boston 2017, pp. 985–990. DOI: 10.1109/ICTAI.2017.00151.
  7. Burton B., Harley R.G. Reducing the computational demands of continually online-trained artificial neural networks for system identification and control of fast processes. IEEE Transactions on Industry Applications, 1998, vol. 34(3), pp. 589–596.
  8. Coury D.V., Oleskovicz M., Aggarwal R.K. An ANN routine for fault detection, classification and location in transmission lines. Electrical Power Components and Systems, 2002, vol. 30, pp. 1137–1149.
  9. Dharmendra K., Moushmi K., Zadgaonkar A.S. Analysis of generated harmonics due to transformer load on power system using artificial neural network. International journal of electrical engineering, 2013, vol. 4(1), pp. 81–90.
  10. Grammatikis P.R., Sarigiannidis P., Sarigiannidis A., Margounakis D., Tsiakalos A., Efstathopoulos G. An Anomaly Detection Mechanism for IEC 60870-5-104. In: 2020 9th Conf. on Modern Circuits and Systems Technologies (MOCAST). Bremen, Germany, 2020, pp. 1–4. DOI: 10.1109/MOCAST49295.2020.9200285.
  11. He Z., Lin S., Deng Y., Li X., Qian Q. A rough membership neural network approach for fault classification in transmission lines. International Journal of Electrical Power and Energy Systems, 2014, vol. 61, pp. 429–439.
  12. Jain A., Thoke A.S., Patel R.N. Fault classification of double circuit transmission line using artificial neural network. International Journal of Electrical Systems Science and Engineering, WASET, 2008, vol. 1, pp. 230–235.
  13. Jamil M. Generalized neural network and wavelet transform based approach for fault location estimation of a transmission line / Jamil, A. Kalam, A.Q. Ansari, M. Rizwan. Applied Soft Computing, 2014, vol. 19, pp. 322–332.
  14. Keerthipala W.W.L., Low Tah Chong, Tham Chong Leong. Artificial neural network model for analysis of power system harmonics. IEEE International Conference on Neural Networks, 1995, vol. 2, pp. 905–910.
  15. Kulikov A.L., Loskutov A.A., Mitrovic M. Improvement of the technical excellence of multiparameter relay protection by combining the signals of the measuring fault detectors using artificial intelligence methods. In: International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019), 2019, vol. 124. DOI: https://doi.org/10.1051/e3sconf/201912401039.
  16. Laruhin A., Nikandrov M., Slavutskii L. Anomalous modes recognizing secondary equipment in electric power industry: adaptive neuro algorithms. In: 2019 International Ural conference on electrical power engineering: Proceedings URALCON, 2019, pp. 399–403.
  17. Mahanty R.N., Dutta Gupta P.B. Comparison of fault classification methods based on wavelet analysis and ANN. Electric Power Components and Systems, 2006, vol. 34, pp. 47–60.
  18. Mazumdar J., Harley R.G., Lambert F., Venayagamoorthy Neural Network Based Method for Predicting Nonlinear Load Harmonics. Power Electronics, IEEE Transactions, 2007, vol. 22(3), pp. 1036–1045. DOI: 10.1109/TPEL.2007.897109.
  19. Niekerk C.R., Rens A.P.J., Hoffman A.J. Identification of types of distortion sources in power systems by applying neural networks. In: 6th IEEE AFRICON, 2002, vol. 2, pp. 829–834.
  20. Osowski S. Neural network for estimation of harmonic components in a power system. IEEЕ Proceedings on Generation, Transmission and Distribution, 1992, vol. 139(2), pp. 129–135.
  21. Rosenblatt F. Principles of neurodymamics. Washington, Spartan books, 1962.
  22. Silva K.M., Souza B.A., Brito N.S.D. Fault detection and classification in transmission lines based on wavelet transform and ANN. IEEE Transactions on Power Delivery, 2006, vol. 21, pp. 2058–2063.
  23. Soldatov A.V.,Naumov V.A., Antonov V.I., AleksandrovaI. Information bases of algorithms for protecting a generator operating on busbars from single-phase-to-ground Faults. Investigation of the Information Bases of Algorithms Controlling Higher Current Harmonics. Power Technology and Engineering, 2019, vol. 53(4), pp. 496–502. DOI: 10.1007/s10749-019-01105-w.
  24. Sundaravaradan N.A., Surya S. Application Technique For Model-Based Approach To Estimate Fault Location. In: IET Smart Grid, 2019. DOI: 10.1049/iet-stg.2019.0135.
  25. Voropai N.I., Kolosok I.N., Korkina E.S., Osak B. Issues of cybersecurity in electric power systems. Energy systems research, 2020, vol. 3, no. 2(10), pp. 19–28.
  26. Yadav A, Dash Y., Ashok V. ANN based directional relaying scheme for protection of Korba-Bhilai transmission line of Chhattisgarh state. Protection and Control of Modern Power Systems, 2016, vol. 1(1). DOI:10.1186/s41601-016-0029-6.
  27. Yadav A., Dash Y. An overview of transmission line protection by artificial neural network: fault detection, fault classification, fault location, and fault direction discrimination. In: Advances in Artificial Neural Systems, 2014, p. 20.

Information about the authors

Sergey O. Ivanov – Senior Lecturer, Math and Hardware Information Systems Department, Chuvash State University, Russia, Cheboksary (v101-11@mail.ru).

Aleksandr A. Lariukhin – Deputy Director of Project Management, LLC «iGRIDS» ltd., Russia, Cheboksary (laruhin@igrids.com).

Maxim V. Nikandrov – Candidate of Technical Sciences, Director, LLC «iGRIDS» ltd., Russia, Cheboksary (nixmak@mail.ru).

Leonid A. Slavutskii – Doctor of Physical and Mathematical Sciences, Professor of Management and Computer Science in Technical Systems Department, Chuvash State University, Russia, Cheboksary (lenya@slavutskii.ru; ORCID: https://orcid.org/0000-0001-6783-2985).

For citations

Ivanov S.O., Lariukhin A.A., Nikandrov M.V., Slavutskii L.A. ACCURACY ESTIMATION FOR OPERATING CHARACTERISTICS NEUROMODELING OF THE OVERCURRENT PROTECTION IN A THREE PHASE MAINS. Vestnik Chuvashskogo universiteta, 2021, no. 1, pp. 68–77. DOI: 10.47026/1810-1909-2021-1-68-77 (in Russian).

Download the full article