Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2021, no. 1. Topic of this Issue: Electrical Technology and Power Engineering  /  DEPENDENCIES OF THE DISTORTION FACTOR OF THE SINUSOIDALITY OF THE RECOVERY CURRENT ON THE PARAMETERS OF THE PROCESS WHEN CONTROLLING THE FORCED DISCHARGE OF ACCUMULATOR BATTERIES INTO THE NETWORK BY SIGNAL WITH SINGLE-CYCLE ONE-WAY PULSE-WIDTH MODULATION

DEPENDENCIES OF THE DISTORTION FACTOR OF THE SINUSOIDALITY OF THE RECOVERY CURRENT ON THE PARAMETERS OF THE PROCESS WHEN CONTROLLING THE FORCED DISCHARGE OF ACCUMULATOR BATTERIES INTO THE NETWORK BY SIGNAL WITH SINGLE-CYCLE ONE-WAY PULSE-WIDTH MODULATION

Sergey S. Frolov, Dmitry A. Shatilov

DOI: 10.47026/1810-1909-2021-1-146-153

Key words

forced discharge of batteries, distortion coefficient of the sinusoidality, regeneration current, control using single-cycle one-way pulse-width modulation, active rectifier.

Annotation

For modern remote and closed systems of uninterruptible power supply, a operation of forced discharge of accumulator batteries is in demand. It is advisable to carry out the specified process of forced discharge with recuperation into the network. This way of leads: firstly, to a decrease in the mass of charging and discharging devices due to the exclusion of powerful resistive loads from the latter; secondly, to noticeable energy savings for closed autonomous objects. At the same time, for the regenerative current, increased requirements are imposed on its sinusoidality, the distortion coefficient of which is significantly influenced by the relationship between the EMF of the battery and the amplitude of the mains voltage, the discharge current and the maximum current of the coil of the active rectifier. The influence the frequency of the PWM control signal and the frequency of the regeneration current (mains frequency) is also possible. In uninterruptible systems, storage batteries are used with different total EMF and capacity that determines the discharge current. In addition, the mentioned values change during operation, and at forced discharge, various technique can be used that differ in the ratio of the discharge current to the capacity of the battery and the law of its change. Therefore, in the development of a universal system for forced discharge of a battery into a network with pulse-width control of the regenerative current shape, is relevant information on the dependences of the distortion factor of the sinusoidality on the above ratios of the battery voltage and the amplitude of the mains voltage, the discharge current and the maximum current of the coil of the active rectifier coil, as well as from the number of pulses for the regeneration current period. The article presents the results of work on obtaining diagrams of these dependencies. To obtain the latter, the function of the output current of the active rectifier is formed – of the regeneration current, then its spectral function. Using the latter, the current waveform distortions are estimated based on the spectral approach. The results obtained are in demand in the development of program modules for microcontrollers of the pulse-width regulators of the regeneration current, which implement algorithms for the formation of a current curve with acceptable values of the distortion coefficient of the sinusoidality when changing the parameters of the battery, network and discharge current.

References

  1. Baskakov S.I.. Radiotekhnicheskie tsepi i signaly. 5-e izd., stereotip. [Radio technic circuits and signals]. Moscow, High school Publ., 2005, 462 p.
  2. Berends D.A., Kukuliev R.M., Filipppov K.K. Pribory i sistemy avtomaticheskogo upravleniya s shirotno-impul’snoi modulyatsiei [Automatic control appliances and systems with pulse-width modulation]. Leningrad, 1982, 280 p.
  3. Garmonicheskie iskazheniya v elektricheskikh setyakh [Harmonic distortion in electrical networks]. Schneider Electric. Tekhnicheskaya kollektsiya Schneider Electric, 2018, iss. 22, 32 p. Available at: http://www.pro-schneider.ru/content/files/140.pdf (Accessed 31 August 2020).
  4. Kamenev Yu.B., Lushina M.V., Yakovlev V.A., Leonov V.N. Novyi svintsovo-kislotnyi akkumulyator dlya morskikh podvodnykh appa-ratov [New lead-acid battery for marine submersibles]. Electrochemical power engineering, 2009, vol. 9, no. 3, pp. 166–170.
  5. Konstantinov G.G., Fam Kong Tao, Kiselev V.I. Tekhnicheskoe sovershenstvovanie avtonomnogo zaryadno-razryadnogo elektrotekhnicheskogo kompleksa akkumulyatornykh batarei podvodnykh apparatov [Technical improvement of the autonomous charging and discharging electro-technical complex of underwater vehicles storage batteries]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2018, vol. 22, no. 3(134), pp. 154–
  6. Savchenko A.V. Razrabotka korabel’noi avtomatizirovannoi sistemy kontrolya i dia-gnostiki akkumulyatornykh batarei dizel’-elektricheskikh podvodnykh apparatov: avtoref. dis. … kand. tekhn. nauk [Development of a ship’s automated system for monitoring and diagnostics of storage batteries of diesel-electric underwater vehicles: Abstract of Cand. Diss.]. St. Petersburg, 2007, 16 p.
  7. Temirev A.P., Tsvetkov A.A., Kiselev V.I. i dr. Mobil’nyi zaryadno-razryadnyi kompleks dlya korabel’nykh akkumulya-tornykh batarei [Mobile charging and discharging complex for ship batteries], Patent RF, no. 2595267, 2015.
  8. Petrovichev M.A., Gurtov A.S. Sistema energosnabzheniya bortovogo kompleksa kosmicheskikh apparatov [Energy supply system of onboard complex of spacecraft], Samara, Samara State Technical University Publ., 2007, 88 p.
  9. Mishin V.N., Bubnov O.V., Rakitin G.A. i dr. Zaryadno-razryadnoe ustroistvo dlya akkumulyatornykh batarei [Charger-discharger device for battery], Utility model RF., no. 103427, 2010.
  10. Chaplygin E.E. Spektral’noe modelirovanie preobrazovatelei s shirotno-impul’snoi modulyatsiei [Spectral modeling of pulse-width modulated converters], Moscow, MEI Publ., 2012, 48 p.
  11. Chernaya M.M. Issledovanie i razrabotka energopreobrazuyushchei apparatury vysoko-vol’tnykh sistem elektropitaniya kosmicheskikh apparatov: dis. … kand. tekhn. nauk [Research and development of energy-converting equipment for high-voltage power supply systems for spacecraft: Cand. Diss.]. Tomsk, 2017, 142 p.
  12. Chernaya M.M. Sistemy elektropitaniya kosmicheskikh apparatov s modulem zaryadno-razryadnogo ustroistva [Power supply systems for spacecraft with a module of charge-discharge device]. Sbornik izbrannykh statei nauchnoi sessii TUSUR, 2018, vol. 1, no. 2, pp. 163–166.
  13. Shichkov L.P., Lyudin V.P., Mokhova O.P. Avtomatizirovannyi zaryadno-razryadnyi tiristornyi preobrazovatel’ dlya elektrotekhnologii regeneratsii akkumulyatornykh batarei [Automated charger-discharger thyristor converter for electrical technologies of regeneration of battery]. Vestnik Rossiiskogo gosudarstvennogo agrarnogo zaochnogo universiteta, 2013, no. 14(19), pp. 105–109.

Information about the authors

Sergey S. Frolov – Candidate of Technical Science, Associate Professor, Department of Industrial Electronics and Information and Measuring Technology, Orenburg State University, Russia, Orenburg (frolovsergey7@mail.ru).

Dmitry A. Shatilov – Master’s Program Student, Electrical Power Faculty, Orenburg State University, Russia, Orenburg (dmitriyshatilov97@gmail.com).

For citations

Frolov S.S., Shatilov D.A. DEPENDENCIES OF THE DISTORTION FACTOR OF THE SINUSOIDALITY OF THE RECOVERY CURRENT ON THE PARAMETERS OF THE PROCESS WHEN CONTROLLING THE FORCED DISCHARGE OF ACCUMULATOR BATTERIES INTO THE NETWORK BY SIGNAL WITH SINGLE-CYCLE ONE-WAY PULSE-WIDTH MODULATION. Vestnik Chuvashskogo universiteta, 2021, no. 1, pp. 146–153. DOI: 10.47026/1810-1909-2021-1-146-153 (in Russian).

Download the full article