Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2021, no. 3. Topic of this Issue: Electrical Technology and Power Engineering  /  IMPROVEMENT OF THE DESIGN ALGORITHM OF SWITCHED-RELUCTANCE MACHINES

IMPROVEMENT OF THE DESIGN ALGORITHM OF SWITCHED-RELUCTANCE MACHINES

Anastasiya V. Shevkunova, Alexandr V. Kashuba

DOI: 10.47026/1810-1909-2021-3-140-155

Key words

switched-reluctance machine, magnetic system, geometric parameters, optimization algorithm, parametric optimization, extremum, electromagnetic moment, pulsations.

Abstract

The issue of improving the technical and economic indicators of switched-reluctance machines at the stage of their design has a significant degree of relevance. This study is devoted to improving the optimization algorithm for designing electric machines of the valve-inductor type.

Parametric, single-criteria optimization was subject to consideration. The task of designing a magnetic system of a switched-reluctance machine is to find the optimal combination of values of geometric parameters, at which the value of the objective function reaches an extremum. Within the framework of this work, optimization was considered by the criterion of the minimum pulsations of the electromagnetic moment at low rotational speeds.

The stochastic method – the Monte-Carlo method – was used as the basis for making changes to improve the efficiency of the optimization algorithm. The essence of the changes is to apply a normal distribution of a random variable with decreasing variance and with a variable value of the mathematical expectation instead of using a uniform distribution.

For this study, methods of mathematical modeling were used, namely the Monte-Carlo method and methods of probability theory. Calculations of the magnetic field of the switched-reluctance machine were performed using the FEMM 4.2 program based on the finite element method.

Due to the changes made to the basic optimization algorithm, the effectiveness of such a criterion as the time to achieve the final result with a given calculation accuracy has become higher. The obtained data can be practically useful in the development of manufacturing technology for the object of optimization.

References

  1. Bal′ V.B., Mint T.A. Proektirovanie i vybor parametrov ventil’no-induktornogo generatora [Design and selection of parameters of a switched-reluctance generator]. Elektrichestvo, 2019, no. 11, рр. 40–44.
  2. Bunday B. Basic Optimisation Methods. Edward Arnold, 1984, 136 p. (Russ. ed.: Metody optimizatsii. Vvodnyy kurs. Moscow, Radio i svyaz’ Publ., 1988, 128 р.).
  3. Buryakovskiy S.G., Lyubarskiy B.G., Masliy Ar.S., Masliy An.S., Shevkunova A.V. Optimizatsiya sistemy upravleniya ventil’no-induktornogo dvigatelya dlya strelochnogo perevoda [Optimization of the control system of the switched-reluctance motor for the switch]. Vestnik Rostovskogo universiteta putei soobshcheniya, 2013, 2, рр. 61–67.
  4. Grebennikov N.V. Matematicheskaya model’ dlya analiza elektromagnitnykh protsessov v reaktivnykh induktornykh mashinakh s sil’nym vzaimnym vliyaniem faz [A mathematical model for the analysis of electromagnetic processes in reactive inductor machines with a strong mutual influence of phases]. Izvestiya Peterburgskogo universiteta putei soobshcheniya, 2019, no. 2, pp. 315–321.
  5. Kashuba A.V. Optimizatsionnyi metod formirovaniya geometricheskikh razmerov zubtsovoi zony ventil’no-induktornogo dvigatelya [Optimization method for forming the geometric dimensions of the tooth zone of a switched-reluctance motor]. Transportnye sistemy i tekhnologii, 2020, no. 1, pp. 30–47.
  6. Miroshnichenko E.E. Povyshenie nadezhnosti podshipnikovogo uzla tyagovogo dvigatelya ventil’no-induktornogo tipa dlya transportnykh sistem [Improving the reliability of the bearing unit of the traction motor of the switched-reluctance type for transport systems]. Kronos, 2021, no. 4(54), pp. 29–32.
  7. Odnokopylov G.I., Bukreyev V.G., Rozayev I.A. Issledovanie otkazoustoichivogo ventil’no-induktornogo elektrodvigatelya nasosa dlya dobychi nefti [Investigation of a fault-tolerant switched-reluctance electric motor of a pump for oil production]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2019, 10, pp. 69–81.
  8. Pakhomin S.A. Vliyanie geometrii zubtsovogo sloya i parametrov pitaniya na pokazateli ven-til’nogo reak-tivnogo induktornogo dvigatelya [The influence of the geometry of the tooth layer and the power supply parameters on the performance of a venous reactive inductor motor]. Izvestiya vuzov. Elektromekhanika, 2000, no. 1, рр. 30–36.
  9. Petrushin A.D., Kashuba A.V. Optimizatsiya aktivnoi chasti ventil’no-induktornogo dvigatelya [Optimization of the active part of the switched-reluctance motor]. Vestnik Rostovskogo gosudarstvennogo universiteta putei soobshcheniya, 2016, no. 1 (61), рр. 61– 65.
  10. Petrushin A.D., Kashuba A.V. Optimizatsiya ventil’no-induktornykh elektricheskikh mashin s uchetom dinamicheskikh rezhimov [Optimization of switched-reluctance electric machines taking into account dynamic modes]. STIN, 2018, no. 3, рр. 7–9.
  11. Petrushin A.D., Shevkunova A.V., Smachnyy V.YU. Issledovanie vzaimosvyazi elektromagnitnogo momenta ventil’no-induktornogo dvigatelya i geometricheskikh elementov ego magnitnoi sistemy [Investigation of the relationship between the electromagnetic moment of a switched-reluctance motor and the geometric elements of its magnetic system]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Energetika, 2020, no. 2, pp. 127–137.
  12. Ptakh G.K., Temirev A.P., Zvezdunov V.A., Tsvetkov A.A. Opyt razrabotki i perspektivy primeneniya ventil’no-induktornykh elektroprivodov na voenno-morskom flote Rossii [Experience in the development and prospects for the use of switched-reluctance electric drives in the Russian Navy]. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika, 2014, no. 6, рр. 32–37.
  13. Puylo G.V., Porayko A.S., Radimov I.N., Rymsha V.V. Vliyanie geometricheskikh sootnoshenii zubtsovoi zony na elektromagnitnyi moment ventil’no-reaktivnogo dvigatelya [Influence of geometric ratios of the tooth zone on the electromagnetic moment of a switched -jet engine]. Vіsnik Natsіonal’nogo unіversitetu «L’vіvs’ka polіtekhnіka», 2003, no. 485, pр. 112–117.
  14. Smachnyy V.Yu., Shevkunova A.V., Shutemov S.V. Skhema pitaniya fazy ventil’no-induktornogo dvigatelya s odnim silovym klyuchom [Power supply circuit of the phase of a switched-reluctance motor with one power key]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya, 2019, no. 30, pр. 102–118.
  15. Kocan S., Rafajdus P. Dynamic model of High Speed Switched Reluctance Motor for automotive applications. Transportation Research Procedia, 2019, vol. 40, pр. 302–309. DOI: https://doi.org/10.1016/j.trpro.2019.07.045 (Access Date: 2021, July 2).
  16. Omaç Z., Cevahir С. Control of switched reluctance generator in wind power system application for variable speeds. Ain Shams Engineering Journal, 2021. DOI: https://doi.org/10.1016/j.asej.2021.01.009 (Access Date: 2021, July 2).
  17. Petrushin A.D., Kashuba A.V. Dynamic optimization of switched-reluctance motors. Russian Engineering Research, 2018, vol. 38, no. 9, pp. 705–706.

Information about the author

Anastasiya V. Shevkunova – Candidate of Technical Sciences, Associate Professor, Traction Rolling Stock Department, Rostov State Transport University, Russia, Rostov-on-Don (nastya3051990@mail.ru; ORCID: https://orcid.org/0000-0002-5508-8367).

Alexandr V. Kashuba – Engineer of the 1st Category, Life Safety Department, Rostov State Transport University, Russia, Rostov-on-Don (kashuba-av@mail.ru; ORCID: https://orcid.org/0000-0002-6529-1895).

For citations

Shevkunova A.V., Kashuba A.V. IMPROVEMENT OF THE DESIGN ALGORITHM OF SWITCHED-RELUCTANCE MACHINES. Vestnik Chuvashskogo universiteta, 2021, no. 3, pp. 140–155. DOI: 10.47026/1810-1909-2021-3-140-155 (in Russian).

Download the full article