Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2021, no. 3. Topic of this Issue: Electrical Technology and Power Engineering  /  INCREASING AN ACCURACY OF CONTROL ACTION VOLUME CALCULATION IN CENTRALIZED EMERGENCY CONTROL SYSTEM FOR STATE ESTIMATION OF POWER SYSTEMS

INCREASING AN ACCURACY OF CONTROL ACTION VOLUME CALCULATION IN CENTRALIZED EMERGENCY CONTROL SYSTEM FOR STATE ESTIMATION OF POWER SYSTEMS

Natalia L. Batseva, Julia A. Foos

DOI: 10.47026/1810-1909-2021-3-5-20

Key words

centralized emergency control system, state estimation, wide-area monitoring system, telemetry, synchronized phasor measurements, Gauss–Newton method development.

Abstract

The paper presents the results of the study on the effectiveness and advisability of voltage’s and current’s angles usage, collected from a wide-area monitoring system, to increase an accuracy of control actions volume calculation in case of power system’s state estimation. Centralized emergency control system architecture of a power pool system is shown to better understand the research core. We emphasize that the state estimation software module is the key module in a high level hardware and software package. Ways of telemetry and synchronized phasor measurements collection are outlined. For research practice, Gauss-Newton mathematical method is modified via measurement vector, vector-function, and scalar matrix of weight coefficients. Experiments are provided by IEEE 14-bus power system and 500–220 kV real backbone network. These power systems have several control areas, connected by interchanges. According to experiment results, we conclude that using not only voltage’s and current’s modules but also angles increases an accuracy of control actions volume calculation and effectiveness of a centralized emergency control system operation in the part of a control action formation. Therewith, the usage of current’s modules and angles raises the execution time of the state estimation software module. It is undesirable for real time systems operation. Therefore, it is reasonable to take into account current’s modules and angles only for those interchanges in emergency mode, when intensity factor, characterizing the limit of static stability, is more than 0.92. We also find out that control action volume calculation is sensitive to mistakes in current’s angles measurements. Thus, for reliable usage of current’s modules and angles as data for a state estimation and control action volume calculation, it is necessary to prevent timing errors of synchronized phasor measurement units and also develop a phase shift correction algorithm.

References

  1. Andreyuk V.A., Gushchina T.A., Kiyatkina S.R., Semenov N.K. Otsenka effektivnosti algoritma upravleniya perekhodnymi rezhimami protyazhennykh tranzitov s ispol’zovaniem informatsii ob otnositel’nykh uglakh po dannym sistemy monitoringa perekhodnykh rezhimov [Evaluation of the efficiency of the control algorithm for transient modes of extended transits using information on relative angles according to the data of the monitoring system for transient modes]. Izvestiya NII postoyannogo toka, 2010, no. 1, pp. 29–42.
  2. Arzhannikov S.G., Vtorushin A.S., Zakharkin O.V. et al. Algoritmicheskoe obespechenie PTK verkhnego urovnya TsSPA OES Sibiri i perspektivy ego razvitiya [Algorithmic support of the top-level software and hardware complex of the Central Control System of the UPS of Siberia and the prospects for its development]. Izvestiya NTTs Edinoi energeticheskoi sistemy, 2013, no. 1, pp. 91–98.
  3. Arzhannikov S.G., Vtorushin A.S., Zakharkin O.V., Popova E.Yu. Ierarkhicheskaya sistema protivoavariinogo upravleniya OES Sibiri [Hierarchical system of emergency management of the UPS of Siberia]. Energetik, 2011, no. 4, pp. 5–8.
  4. Ayuev B.I., Koshcheev L.A., Shul’ginov N.G. Razvitie printsipov, algoritmov i zadach protivoavariinogo upravleniya v EES Rossii [Development of principles, algorithms and tasks of emergency management in the UES of Russia]. Energosistemy: upravlenie, konkurentsiya, obrazovanie: sb. dokladov mezhdunar.nauch.-prakt. konf. [Proc. of Int. Sci. Conf. «Energy Systems: Governance, Competition, Education»]. Ekaterinburg, 2008, pp. 16–20.
  5. Bartolomei P.I., Tashchilin V.A., Suvorov A.A. Informatsionnoe obespechenie zadach elektroenergetiki [Information support of the tasks of the electric power industry]. Ekaterinburg, Ural University Publ., 2015, 108 p.
  6. Batseva N.L., Foos Yu.A., Pankratov A.V. Otsenka vliyaniya pogreshnosti v sinkhronizirovannykh vektornykh izmereniyakh uglov pri napryazheniyakh na otsenivanie parametrov rezhima elektroenergeticheskikh system [Evaluation of the error effect in synchronous vector measurement of angles at voltages on assessing the duty parameters of electric power systems]. Vestnik Chuvashskogo universiteta, 2020, no. 3, pp. 24–45.
  7. Batseva N.L., Foos Yu.A. Razrabotka programmnogo obespecheniya dlya otsenivaniya sostoyaniya energosistem s primeneniem sinkhronizirovannykh vektornykh izmerenii [Development of software for assessing the state of power systems using synchronized vector measurements]. Teoriya i praktika proektnogo obrazovaniya, 2020, no. 1, pp. 41–44.
  8. Belyaeva E.V., Nikolaev A.V., Prikhno V.L. Optimal’noe razmeshchenie ustroistv sinkhronizirovannykh vektornykh izmerenii dlya resheniya zadachi otsenivaniya sostoyaniya v TsSPA i SMZU [Optimal placement of synchronized vector measurement devices for solving the problem of state estimation in CECS and SMZU]. Izvestiya NTTs Edinoi energeticheskoi sistemy, 2018, no. 2, pp. 12–24.
  9. Gaidamakin F. N., Demidov S. I. Apparatnye i programmnye sredstva kompleksa TsSPA OES Vostoka [Hardware and software of the CECS OES East complex]. Izvestiya NTTs Edinoi enegeticheskoi sistemy, 2013, no. 1, pp. 69–78.
  10. Gamm A. Z., Gerasimov L.N., Golub I.I. et al. Otsenivanie sostoyaniya v elektroenergetike [State estimation in the electric power industry]. Moscow, Nauka Publ., 1983, 302 p.
  11. Glazunova A.M., Kolosok I.N. Reshenie zadach dispetcherskogo upravleniya intellektu-al’nymi elektroenergeticheskimi sistemami na baze metodov otsenivaniya sostoyaniya [Solving dispatch control problems for intelligent electric power systems based on state estimation methods]. Energeti-ka Rossii v XXI veke. Innovatsionnoe razvitie i upravlenie: sb. materialov Vseros. konf. [Proc. of Rus. Sci. Conf. «Energy of Russia in the XXI century. Innovative development and management»]. Irkutsk, 2015, pp. 337– 344.
  12. GOST R 55105-2019. Edinaya energeticheskaya sistema i izolirovanno rabotayushchie ener-gosistemy. Operativno-dispetcherskoe upravlenie. Avtomaticheskoe protivoavariinoe upravle-nie rezhimami energosistem. Protivoavariinaya avtomatika energosistem. Normy i trebovaniya standartov [Unified power system and isolated power systems. Operational dispatch control. Automatic emergency control of power systems modes. Emergency automation of power systems. Norms and requirements]. Moscow, 2019, 40 p.
  13. GOST R. 60870-5-104-2004. Ustroistva i sistemy telemekhaniki [Telemechanic devices and systems]. Moscow, 2004, 49 p.
  14. Danilin A.V., Prikhno V.L., Zhukov A.V., Demchuk A.T. Sistema monitoringa zapasov ustoichivosti energosistemy po dannym SMPR [The system for monitoring the stability reserves of the power system according to the SMPR data]. Operativnoe upravlenie v elektroenergetike: podgotovka personala i podderzhanie ego kvalifikatsii, 2009, no. 1, pp. 50–54.
  15. Demidov S.I., Roeva O.D. Istoriya sozdaniya i razvitiya tsentralizovannoi sistemy protivoavariinoi avtomatiki v OES Urala [The history of the creation and development of the centralized emergency control system in the UES of the Urals]. Izvestiya NTTs Edinoi energeticheskoi sistemy, 2013, no. 1(68), pp. 113–118.
  16. Katsuk A.V., Petrov A.E., Sakaev O.O., Subbotin-Chukal’skii A.V. Osobennosti realizatsii protokola MEK 60870-5-104 v mikroprotsessornykh ustroistvakh protivoavariinoi avtomatiki [Features of the implementation of the IEC 60870-5-104 protocol in microprocessor-based anti-emergency automation devices]. Nauchnye problemy transporta Sibiri i Dal’nego Vostoka, 2009, no.1, pp. 189–191.
  17. Khokhlov M.V. K vyboru kriteriya optimal’nogo razmeshcheniya PMU dlya zadachi otsenivaniya sostoyaniya EES [To the choice of the criterion for the optimal placement of PMU for the problem of assessing the state of the EPS]. Metodicheskie voprosy issledovaniya nadezhnosti bol’shikh sistem energetiki: sb. materialov Mezhdunarodnogo nauchnogo seminara im. N. Yu. Rudenko [Proc. of Int. Sci. seminar «Methodological issues in the study of the reliability of large energy systems»]. Irkutsk, ISEM SO RAN Publ., 2018, pp. 382–391.
  18. Begovic M., Madani V., Novosel D. System integrity protection schemes (SIPS). iREP Symposium-Bulk Power System Dynamics and Control-VII. Revitalizing Operational Reliability. IEEE, 2007, pp. 1-6.
  19. Kolosok I. N., Korkina E. S., Mahnitko A. E. Detection of systematic errors in PMU measurements by the power system state estimation methods. Proc. of 56th Int. Sci. Conf. on Power and Electrical Engineering of Riga Technical University (RTUCON).IEEE, 2015, pp. 1–4.
  20. Korres G. N., Manousakis N. M. A state estimator including conventional and synchronized phasor measurements. Computers & Electrical Engineering, 2012, vol. 38, no. 2, pp. 294–305.
  21. Phadke G., Thorp J.S. Synchronized Phasor Measurements and Their Applications. New York, Springer, 2008.
  22. 118.1-2011. IEEE standard for synchrophasor measurements for power systems. IEEE Standard Association, 2011.

Information about the authors

Natalia L. Batseva – Candidate of Technical Sciences, Assistant Professor of Power Engineering Department, Tomsk Polytechnic University, Russia, Tomsk (batsevan@tpu.ru; ORCID: https://orcid.org/0000-0003-1808-4700).

Julia A. Foos – Post-Graduate Student, Tomsk Polytechnic University, Russia, Tomsk (JuliaAlekseevna6797@gmail.com; ORCID: https://orcid.org/0000-0003-4592-2538).

For citations

Batseva N.L., Foos Ju.A. INCREASING AN ACCURACY OF CONTROL ACTION VOLUME CALCULATION IN CENTRALIZED EMERGENCY CONTROL SYSTEM FOR STATE ESTIMATION OF POWER SYSTEMS. Vestnik Chuvashskogo universiteta, 2021, no. 3, pp. 5–20. DOI: 10.47026/1810-1909-2021-3-5-20 (in Russian).

Download the full article