Anatoly V. Bychkov, Irina Yu. Bychkova, Nadezhda N. Suslova, Kurbangali K. Alimov
DOI: 10.47026/1810-1909-2021-3-21-30
Key words
artificial neural network, vibration control, ultrasonic pulses, electrical equipment.
Abstract
The apparatus of artificial neural networks (ANN) is proposed to be used for signal processing in active ultrasonic (US) vibration control of electrical equipment. A feature of the applied neural network algorithm is that the required information about vibration parameters is embedded in the ultrasound signal’s phase change at its constant amplitude. Under these conditions, traditional spectral analysis of signals requires a high sampling rate and a significant recording duration. When using the direct propagation’s ANN with three hidden layers, it was shown that it is sufficient to use a sampling frequency of 5-6 points for the period of an ultrasonic wave and a recording duration of 4-5 periods to estimate the nonstationary frequency and amplitude of the vibration signal. Estimates of the error in determining the amplitude, frequency and phase of vibrations are obtained. The root-mean-square errors of the neural network algorithm do not exceed units of percent. The possibilities of using a trained neural network for signal processing in a “sliding window” are demonstrated. The accuracy characteristics of the proposed neural network algorithm of signal processing and the possibility of its optimization for electrical equipment’s vibration control are discussed.
References
- Bychkov A.V., Slavutskii L.A. Vozmozhnosti korrelyatsionnoi obrabotki impul’snykh ul’trazvukovykh signalov pri beskontaktnom vibrokontrole oborudovaniya ehlektroehnergetiki [Capabilities of correlation processing of pulse ultrasonic signals for noncontact vibration control of electric power industry equipment]. Vestnik Chuvashskogo universiteta, 2018, no. 3, pp. 24–32.
- Dyuk V., Samoilenko A. Data Mining [Data mining]. St. Petersburg, Piter Publ., 2001, 386 p.
- Kostyukova N.I. Sistema prinyatiya reshenii v oblasti meditsinskoi diagnostiki i vybora optimal’nykh reshenii po tekhnologii Data Mining [Decision-making system in the field of medical diagnostics and selection of optimal solutions using Data Mining technology]. Otkrytoe obrazovanie, 2010, App., pp. 145–146.
- Rusov V.A. Diagnostika defektov vrashchayushchegosya oborudovaniya po vibratsionnym signalam [Diagnosis of defects in rotating equipment by vibration signals]. Perm, DimRus Publ., 2012, 200 p.
- Slavutskii L.A., Kostyukov A.S. Statisticheskaya pogreshnost’ ul’trazvukovogo tsifrovogo urovnemera s chastotno-fazovoi modulyatsiei signala [Statistical error of an ultrasonic digital level meter with frequency-phase modulation of the signal]. Pribory i sistemy. Upravlenie, kontrol’, diagnostika, 2009, no. 8, pp. 35–37.
- Slavutskaya E.V., Abrukov V.S., Slavutskii L.A. Prostye neirosetevye algoritmy dlya ocenki latentnykh svyazei psikhologicheskikh kharakteristik mladshikh podrostkov [Simple neuro network algorithms for evaluating latent links of younger adolescent’s psychological characteristics]. Eksperimental’naya psihologiya, 2019, vol. 12, no. 2, pp. 131–144.
- Slavutskaya E.V. O vybore struktury iskusstvennykh nejrosetei i algoritmov analiza psikhodiagnosticheskikh dannykh [On choosing the artificial neural networks structure and the algorithms for psycho diagnostic data analyzing]. Kazanskii pedagogicheskii zhurnal, 2020, no. 5(142), pp. 202–211. DOI: 10.34772/KPJ.2020.142.5.026.
- Finn V.K. Ob intellektual’nom analize dannykh [About data mining]. Novosti iskusstvennogo intellekta, 2004, no. 3, pp. 3–18.
- Bychkov A., Bychkova I., Slavutskii L. Active Ultrasonic Vibration Control of Electrical Equipment: Correlation Signal Processing. In: 2019 International Ural Conference on Electrical Power Engineering (UralCon), 2019, pp. 244–248. DOI: 10.1109/URALCON.2019.8877666.
- Bychkov A., Slavutskii L., Slavutskaya E. Neural network for pulsed ultrasonic vibration control of electrical equipment. In: 2020 International Ural Conference on Electrical Power Engineering (UralCon), 2020, pp. 24–28. DOI: 10.1109/UralCon49858.2020.9216248.
- Dillon T.S., Niebur D. Neural Networks Application in Power Systems. London, CRL Ltd. Publishing, 1996.
- Hinton G., Deng L., Yu D., Dahl G., Mohamed A., Jaitly N., Senior A., Vanhoucke V., Nguyen P., Sainath T., Kingsbury B. Deep Neural Networks for Acoustic Modeling in Speech Recognition – The shared views of four research groups. In: IEEE Signal Processing Magazine, iss. 29, no. 6, pp. 82–97. DOI: 10.1109/msp.2012.2205597.
- Jambukia S.H., Dabhi V.K., Prajapati H.B. Classification of ECG signals using machine learning techniques: A survey. In: IEEE 2015 International Conference on Advances in Computer Engineering and Applications, 2015, pp. 714–721. DOI: 10.1109/ICACEA.2015.7164783.
- Kakar S.A., Sheikh N., Naseem A., Iqbal S, Rehman A., Kakar A., Kakar B.A., Kakar H.A., Khan B. Artificial Neural Network based Weather Prediction using Back Propagation Technique. International Journal of Advanced Computer Science and Applications, 2018, iss. 9, no. 8, pp. 462–470. DOI: 10.14569/IJACSA.2018.090859.
- Kezunovic M. A Survey of Neural Net Applications to Protective Relaying and Fault Analysis. Engineering Intelligent Systems, 1997, iss. 5, no. 4, pp. 185–192.
- Kumar K., Thakur G.S.M. Advanced Applications of Neural Networks and Artificial Intelligence: A Review. International Journal of Information Technology and Computer Science, 2012, no. 6, pp. 57–68. DOI: 10.5815/ijitcs.2012.06.08.
- LeCun Y., Bengio Y. Convolutional Networks for Images, Speech, and Time-Series. In: Arbib M.A., ed. The Handbook of Brain Theory and Neural Networks. Cambrige, MIT Press, 1995.
- Matti D., Ekenel H.K., Thiran J.P. Combining LiDAR space clustering and convolutional neural networks for pedestrian detection. In: 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2017, pp. 1–6. DOI: 10.1109/AVSS.2017.8078512.
- Petrushin V.A., Khan L. Multimedia Data Mining and Knowledge Discovery. New York, Springer-Verlag, 2006. 539 c.
- Samarasinghe S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. 1st Boca Raton, Auerbach Publications, 2006, 570 c.
- Schmidhuber J. Deep Learning in Neural Networks: An Overview. Neural Networks, 2014, no. 61, pp. 85–117. DOI: 10.1016/j.neunet.2014.09.003.
- Su H., Li G., Yu D., Seide F. Error back propagation for sequence training of context-dependent deep networks for conversational speech transcription. In: Proceedings of International Conference on Acoustics Speech and Signal Processing (ICASSP), 2013, pp. 6664–6668.
- Witten I.H., Frank E., Hall M.A., Kaufmann M. Data Mining: Practical Machine Learning Tools and Techniques. 3rd Amsterdam, Elsevier, 2011, 629 p.
Information about the authors
Anatoly V. Bychkov – Post-Graduate Student of Electrical and Electronic Apparatuses Department, Chuvash State University, Russia, Cheboksary (bav.xlab@gmail.com; ORCID: https://orcid.org/0000-0003-2674-8626).
Irina Yu. Bychkova – Post-Graduate Student, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (biy.quint@gmail.com; ORCID: https://orcid.org/0000-0001-9852-3288).
Nadezhda N. Suslova – Master’s Program Student, Faculty of Radio Electronics and Automation, Chuvash State University, Russia, Cheboksary (suslova.nadeshda@yandex.ru).
Kurbangali K. Alimov – Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Applied Physics and Nanotechnology, Chuvash State University, Russia, Cheboksary (alimkur55@mail.ru).
For citations
Bychkov A.V., Bychkova I.Yu., Suslova N.N., Alimov K.K. NEURAL NET USING TO DETERMINE DEPTH AND FREQUENCY OF SIGNALS’ MODULATION FOR ELECTRICAL EQUIPMENT ULTRASONIC VIBROCONTROL. Vestnik Chuvashskogo universiteta, 2021, no. 3, pp. 21–30. DOI: 10.47026/1810-1909-2021-3-21-30 (in Russian).
Download the full article