Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2022, no. 1. Topic of this Issue: Electrical Technology and Power Engineering  /  ELECTROMAGNETIC COMPATIBILITY OF CONTROL AND MEASURING CABLES IN NON-STATIONARY MODES

ELECTROMAGNETIC COMPATIBILITY OF CONTROL AND MEASURING CABLES IN NON-STATIONARY MODES

DOI: 10.47026/1810-1909-2022-1-128-141

УДК 621.317.421:621.391.82

ББК 31.222

MAXIM G. POPOV, PETR N. MANKOV, ALEXEY A. MELNIKOV, AZAMAT A. DAUTOV

Key words

conductor, short circuit, magnetic field, electromagnetic compatibility, control and measuring cables, non-stationary mode

Abstract

The article deals with questions of researching and analysis of voltages induced in protective shields of three-phase shielded conductor in modes of asymmetric short circuits external to generators of power station. The development of recommendations and measures to ensure electromagnetic compatibility of measuring circuits of microprocessor devices is an urgent research task, since it is generally determined by the electrophysical properties of the interference source and the analog-digital element base of the measuring part of the devices. The scientific novelty of the work consists in the development of measures to eliminate the induced electromagnetic influence on control and measuring cables switched to current and voltage measuring transformers. The purpose of the study is to assess the electromagnetic effect of the industrial frequency field on control and measuring cables laid near a phase-shielded current pipeline, as well as to develop measures to ensure their electromagnetic compatibility. The paper presents a method for calculating the distribution of the intensity modulus H of a magnetic field induced by an industrial frequency current from a generator at an electric power station. For the modes of single-phase, two-phase and two-phase short circuits to the ground, patterns of the distribution of the magnetic field intensity modulus H are constructed, a stiffness class is assigned according to the magnetic field effect on control and measuring cables in accordance with the classification. Recommendations to reduce the level of exposure to the magnetic field intensity H are given. In case of using the screen, a repeated calculation was performed to compare and determine the effectiveness of this event. As a result of numerical experiments, the effectiveness of the use of an additional screen as one of the measures to ensure electromagnetic compatibility is justified. The use of an additional steel shield makes it possible to reduce the magnetic field strength on the surface of control and measuring cables to acceptable values and, as a result, ensure reliable operation of microprocessor control, protection and automation devices.

References

  1. Bessolitsyn A.V., Novoselova O.A., Popov M.G. Razrabotka metodiki chislennogo rascheta prodol’nykh parametrov vozdushnoi linii na osnove trekhmernoi kraevoi zadachi [Development of a methodology for the numerical calculation of the longitudinal parameters of an overhead line based on a three-dimensional boundary value problem]. Nauchno-tekhnicheskie vedomosti SPbGPU, 2010, no. 2, pp. 50–55.
  2. Bessolitsyn A.V., Popov M.G., Khoroshinina E.N. Ispol’zovanie chislennogo rascheta trekhmernogo elektrostaticheskogo polya dlya opredeleniya sobstvennykh i vzaimnykh emkostei provodov vozdushnoi linii [Using the numerical calculation of a three-dimensional electrostatic field to determine the own and mutual capacities of the overhead line wires]. Nauchno-tekhnicheskie vedomosti SPbGPU, 2010, no 2, pp. 55–59.
  3. Bessolitsyn A.V., Popov M.G. Chislennyi raschet nachal’nogo napryazheniya obshchei korony na mnogoprovolochnykh provodakh [Numerical calculation of the initial voltage of the common corona on stranded wires]. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika, 2010, no. 2 (Special issue), pp. 35–37.
  4. Vanin V.K., Ambrosovskaya T.D., Popov M.G., Popov S.O. Povyshenie dostovernosti raboty izmeritel’nykh tsepei releinoi zashchity [Increasing the reliability of the measuring circuits of relay protection]. Elektricheskie stantsii, 2015, no. 11, pp. 30–35.
  5. Vanin V.K., Vanin I.V., Popov M.G. Povyshenie tochnosti izmereniya pervichnykh napryazhenii v energosistemakh [Increasing the accuracy of measuring primary stresses in power systems]. Vestnik Chuvashskogo universiteta, 2019, no. 3, pp. 46–52.
  6. Vanin V.K., Zaboin V.N., Popov M.G., Sirenko N.V., Khabarov A.A. Vosproizvedenie to-kov i napryazhenii izmeritel’nykh transformatorov toka [Reproduction of currents and voltages of measuring current transformers]. Releinaya zashchita i avtomatizatsiya, 2018, no. 4(33), pp. 42–45.
  7. Vanin V.K., Popov M.G. Analiz protsessov v silovykh i izmeritel’nykh transformatorakh i korrektsiya ikh opisaniya dlya razlichnykh prilozhenii [Analysis of processes in power and measuring transformers and correction of their description for various applications]. Releinaya zashchita i avtomatizatsiya, 2018, no. 01(30), pp. 39–45.
  8. Vanin V.K., Popov M.G. Elementy sistem avtomaticheskogo upravleniya v energetike. Tsifrovaya mikroelektronika sistem releinoi zashchity i avtomatiki [Elements of automatic control systems in the power industry. Digital microelectronics of relay protection and automation systems]. St. Petersburg, St. Petersburg State Polytechnic University Publ., 2008, 152 p.
  9. Vanin V.K., Popov M.G. Teoreticheskie osnovy tsifrovykh sredstv releinoi zashchity i avtomatiki [Theoretical foundations of digital means of relay protection and automation]. St. Petersburg, St. Petersburg State Polytechnic University Publ., 2012. 170 p.
  10. Popov M.G. Avtomatizirovannye sistemy kontrolya kachestva elektroenergii raspre-delitel’nykh setei [Automated systems for monitoring the quality of electricity distribution networks]. Energetik, 2003, no. 12, pp. 34–35.
  11. Popov M.G. Sovershenstvovanie metodov chislennogo rascheta rasstoyaniya do mesta povrezhdeniya vozdushnykh linii elektroperedachi [Improvement of methods for numerical calculation of the distance to the place of damage to overhead power lines]. Nauchno tekhnicheskie vedomosti SPbGPU, 2011, no. 3(130), pp. 54–61.
  12. Popov M.G., Vanin V.K., Zaboin V.N., Gurevich E.I. Identifikatsiya parametrov silovogo oborudovaniya v adaptivnykh sredstvakh zashchity i avtomatiki [Identification of parameters of power equipment in adaptive means of protection and automation]. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika, 2018, vol. 61, no. 6, pp. 68–76.
  13. Popov M.G., Vasil’eva O.A., Asainov D.N. Opyt vnedreniya tsifrovykh tekhnologii na TETs na baze mnogofunktsional’nykh izmeritel’nykh priborov [Experience in the implementation of digital technologies at thermal power plants based on multifunctional measuring devices]. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki, 2019, vol. 25, no. 3, pp. 47–58. DOI: 10.18721/JEST.25303.
  14. Popov M.G., Bazlov D.A., Vasil’eva O.A., Chzhiyui L., Lapidus A.A., Semenov K.N. Osobennosti dinamicheskikh svoistv avtonomnoi mikroseti s istochnikami raspredelennoi generatsii [Features of the dynamic properties of an autonomous microgrid with distributed generation sources]. Releinaya zashchita i avtomatizatsiya, 2020, no. 1(38), pp. 26–31.

Information about the authors

Maxim G. Popov – Doctor of Technical Sciences, Professor of the Higher School of High-Voltage Energy, Peter the Great St. Petersburg Polytechnic University, Russia, St. Petersburg (Popovmg@eef.spbstu.ru; ORCID: https://orcid.org/0000-0003-1621-9755).

Petr N. Mankov – Post-Graduate Student of the Higher School of High-Voltage Energy, Peter the Great St. Petersburg Polytechnic University, Russia, St. Petersburg (mankov.pn@edu.spbstu.ru; ORCID: https://orcid.org/0000-0002-9104-664X).

Alexey A. Melnikov – Post-Graduate Student of the Higher School of High-Voltage Energy, Peter the Great St. Petersburg Polytechnic University, Russia, St. Petersburg (melnikov3.aa@edu.spbstu.ru; ORCID: https://orcid.org/0000-0001-7042-3277).

Azamat A. Dautov – Post-Graduate Student of the Higher School of High-Voltage Energy, Peter the Great St. Petersburg Polytechnic University, Russia, St. Petersburg (dautov.aa@edu.spbstu.ru; ORCID: https://orcid.org/0000-0002-6273-3977).

 For citations

Popov M.G., Mankov P.N., Melnikov A.A., Dautov A.A. ELECTROMAGNETIC COMPATIBILITY OF CONTROL AND MEASURING CABLES IN NON-STATIONARY MODES. Vestnik Chuvashskogo universiteta, 2022, no. 1, pp. 128–141. DOI: 10.47026/1810-1909-2022-1-128-141 (in Russian).

 Download the full article