Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2022, no. 1. Topic of this Issue: Electrical Technology and Power Engineering  /  ENSURING ELECTROMAGNETIC COMPATIBILITY OF MICROPROCESSOR DEVICES

ENSURING ELECTROMAGNETIC COMPATIBILITY OF MICROPROCESSOR DEVICES

DOI: 10.47026/1810-1909-2022-1-115-127

УДК 621.317.421:621.391.82

ББК 31.222

MAXIM G. POPOV, ALEXEY A. MELNIKOV, PETR N. MANKOV, AZAMAT A. DAUTOV

Key words

choke, magnetic induction, electromagnetic compatibility, magnetic field strength, microprocessor board

Abstract

The research is devoted to the problem of electromagnetic compatibility of toroidal chokes with microprocessor elements of printed circuit boards. The scientific novelty of the work lies in the determination of the most favorable option for the location of the chokes through the minimization function. The analysis of target vector functions and the most effective option is carried out. The purpose of the study is to determine the permissible location of the chokes, at which the electromagnetic interference, they create for the microprocessor elements of the printed circuit board, will be minimal. The object of the study is a printed circuit board of a microprocessor-based device for measuring the grounding resistance of supports of high-voltage power lines, in the power circuit of which toroidal chokes are used. The subject of this work is the electrophysical properties of toroidal chokes, which are sources of electromagnetic interference for microprocessor elements of control and measuring instruments. The research methodology consists in carrying out numerical experiments to calculate the electromagnetic field with subsequent analysis of the obtained vector functions of the magnetic field strength H on the board surface. The assessment of the influence of interference caused by chokes is carried out using the developed mathematical model and numerical methods for calculating the electromagnetic field. For computational calculations, the authors have developed a software algorithm implemented using the Delphi programming language. The choice of the mutual arrangement of the chokes on the microprocessor integrated circuit is carried out as a result of solving the optimization problem by the gradient method, taking into account the given restrictions on the condition of electromagnetic compatibility. To assess electromagnetic compatibility, a design model of a printed circuit board of a microprocessor device with toroidal chokes was developed. As a result of a numerical experiment, a method for automated determination of the location of toroidal chokes within an integrated microcircuit of resistance devices of the proposed control of electrodes of overhead power transmission line supports was tested. As a result of research, it was found that for electromagnetic compatibility of microelectronic devices, it is sufficient to place the toroidal chokes of power circuits closer to the corners of the printed circuit board. In other design cases, the EMC class 1 requirement is not met.

References

  1. Bessolitsyn A.V., Novoselova O.A., Popov M.G. Razrabotka metodiki chislennogo rascheta prodol’nykh parametrov vozdushnoi linii na osnove trekhmernoi kraevoi zadachi [Development of a methodology for the numerical calculation of the longitudinal parameters of an overhead line based on a three-dimensional boundary value problem]. Nauchno-tekhnicheskie vedomosti SPbGPU, 2010, no. 2, pp. 50–55.
  2. Bessolitsyn A.V., Popov M.G., Khoroshinina E.N. Ispol’zovanie chislennogo rascheta trekhmernogo elektrostaticheskogo polya dlya opredeleniya sobstvennykh i vzaimnykh emkostei provodov vozdushnoi linii [Using the numerical calculation of a three-dimensional electrostatic field to determine the own and mutual capacities of the overhead line wires]. Nauchno-tekhnicheskie vedomosti SPbGPU, 2010, no. 2, pp. 55–59.
  3. Bessolitsyn A.V., Popov M.G. Chislennyi raschet nachal’nogo napryazheniya obshchei korony na mnogoprovolochnykh provodakh [Numerical calculation of the initial voltage of the common corona on stranded wires]. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika, 2010, no. 2 (Special issue), pp. 35–37.
  4. Bessonov L.A. Teoreticheskie osnovy elektrotekhniki. 8-e izd [Theoretical foundations of electrical engineering. 8th ed.]. Moscow, Vysshaya shkola Publ., 1986, 263 p.
  5. Vanin V.K., Ambrosovskaya T.D., Popov M.G., Popov S.O. Povyshenie dostovernosti raboty izmeritel’nykh tsepei releinoi zashchity [Increasing the reliability of the measuring circuits of relay protection]. Elektricheskie stantsii, 2015, no. 11, pp. 30–35.
  6. Vanin V.K., Vanin I.V., Popov M.G. Povyshenie tochnosti izmereniya pervichnykh napryazhenii v energosistemakh [Increasing the accuracy of measuring primary stresses in power systems]. Vestnik Chuvashskogo universiteta, 2019, no. 3, pp. 46–52.
  7. Vanin V.K., Zaboin V.N., Popov M.G., Sirenko N.V., Khabarov A.A. Vosproizvedenie to-kov i napryazhenii izmeritel’nykh transformatorov toka [Reproduction of currents and voltages of measuring current transformers]. Releinaya zashchita i avtomatizatsiya, 2018, no. 4(33), pp. 42–45.
  8. Vanin V.K., Popov M.G. Analiz protsessov v silovykh i izmeritel’nykh transformatorakh i korrektsiya ikh opisaniya dlya razlichnykh prilozhenii [Analysis of processes in power and measuring transformers and correction of their description for various applications]. Releinaya zashchita i avtomatizatsiya, 2018, no. 01(30), pp. 39–45.
  9. Vanin V.K., Popov M.G. Elementy sistem avtomaticheskogo upravleniya v energetike. Tsifrovaya mikroelektronika sistem releinoi zashchity i avtomatiki [Elements of automatic control systems in the power industry. Digital microelectronics of relay protection and automation systems]. St. Petersburg, St. Petersburg State Polytechnic University Publ., 2008, 152 p.
  10. Vanin V.K., Popov M.G. Teoreticheskie osnovy tsifrovykh sredstv releinoi zashchity i avtomatiki [Theoretical foundations of digital means of relay protection and automation]. St. Petersburg, St. Petersburg State Polytechnic University Publ., 2012. 170 p.
  11. Zelenin A.S., Kuznetsov V.L., Popov M.G. Razrabotka mikroprotsessornogo ispytatel’no-diagnosticheskogo kompleksa sredstv releinoi zashchity i avtomatiki elektroenergeticheskikh sistem [Development of a microprocessor test and diagnostic complex for relay protection and automation of electric power systems]. Nauchno-tekhnicheskie vedomosti SPbGPU. Ser. Nauka i obrazovanie, 2012, no. 2-2(147), pp. 53–58.
  12. Popov M.G. Avtomatizirovannye sistemy kontrolya kachestva elektroenergii raspre-delitel’nykh setei [Automated systems for monitoring the quality of electricity distribution networks]. Energetik, 2003, no. 12, pp. 34–35.
  13. Popov M.G. Sovershenstvovanie metodov chislennogo rascheta rasstoyaniya do mesta povrezhdeniya vozdushnykh linii elektroperedachi [Improvement of methods for numerical calculation of the distance to the place of damage to overhead power lines]. Nauchno tekhnicheskie vedomosti SPbGPU, 2011, no. 3(130), pp. 54–61.
  14. Popov M.G., Vanin V.K., Zaboin V.N., Gurevich E.I. Identifikatsiya parametrov silovogo oborudovaniya v adaptivnykh sredstvakh zashchity i avtomatiki [Identification of parameters of power equipment in adaptive means of protection and automation]. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika, 2018, vol. 61, no. 6, pp. 68–76.
  15. Popov M.G., Vasil’eva O.A., Asainov D.N. Opyt vnedreniya tsifrovykh tekhnologii na TETs na baze mnogofunktsional’nykh izmeritel’nykh priborov [Experience in the implementation of digital technologies at thermal power plants based on multifunctional measuring devices]. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki, 2019, vol. 25, no. 3, pp. 47–58. DOI: 10.18721/JEST.25303.
  16. Popov M.G., Bazlov D.A., Vasil’eva O.A., Chzhiyui L., Lapidus A.A., Semenov K.N. Osobennosti dinamicheskikh svoistv avtonomnoi mikroseti s istochnikami raspredelennoi generatsii [Features of the dynamic properties of an autonomous microgrid with distributed generation sources]. Releinaya zashchita i avtomatizatsiya, 2020, no. 1(38), pp. 26–31.

 Information about the authors

Maxim G. Popov – Doctor of Technical Sciences, Professor of the Higher School of High-Voltage Energy, Peter the Great St. Petersburg Polytechnic University, Russia, St. Petersburg (Popovmg@eef.spbstu.ru; ORCID: https://orcid.org/0000-0003-1621-9755).

Alexey A. Melnikov – Post-Graduate Student of the Higher School of High-Voltage Energy, Peter the Great St. Petersburg Polytechnic University, Russia, St. Petersburg (melnikov3.aa@edu.spbstu.ru; ORCID: https://orcid.org/0000-0001-7042-3277).

Petr N. Mankov – Post-Graduate Student of the Higher School of High-Voltage Energy, Peter the Great St. Petersburg Polytechnic University, Russia, St. Petersburg (mankov.pn@edu.spbstu.ru; ORCID: https://orcid.org/0000-0002-9104-664X).

Azamat A. Dautov – Post-Graduate Student of the Higher School of High-Voltage Energy, Peter the Great St. Petersburg Polytechnic University, Russia, St. Petersburg (dautov.aa@edu.spbstu.ru; ORCID: https://orcid.org/0000-0002-6273-3977).

For citations

Popov M.G., Melnikov A.A., Mankov P.N., Dautov A.A. ENSURING ELECTROMAGNETIC COMPATIBILITY OF MICROPROCESSOR DEVICES. Vestnik Chuvashskogo universiteta, 2022, no. 1, pp. 115–127. DOI: 10.47026/1810-1909-2022-1-115-127 (in Russian).

 Download the full article