Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2022, no. 1. Topic of this Issue: Electrical Technology and Power Engineering  /  FEED FORWARD NEURAL NET SIGNAL PROCESSING: APPROXIMATION AND DECISION MAKING

FEED FORWARD NEURAL NET SIGNAL PROCESSING: APPROXIMATION AND DECISION MAKING

DOI: 10.47026/1810-1909-2022-1-14-22

УДК 621.316.91

ББК 31.247

VYACHESLAV V. ANDREEV, LEONID A. SLAVUTSKII, ELENA V. SLAVUTSKAYA

Key words

artificial neural networks, forward propagation, signal processing in electrical engineering, approximation, classification, decision-making

Abstract

Feed forward artificial neural networks (multilayer perceptron) allow solving a wide range of regression (approximation) and classification (data splitting into subsets) problems. The corresponding algorithms are applied in electrical and power engineering. The peculiarity of such an artificial neural network is that the training sample can be submitted to the input in an arbitrary sequence. Therefore, the signals themselves during artificial neural network training should be formed taking into account their time form. The paper proposes the use of artificial neural network in a sliding time window. Using simple examples of transients and relay protection, the paper analyses the possibilities of the signals’ time form approximation and the problems of recognition using the artificial neural network of the signal parameters near zero and threshold values. It is shown that errors in the operation of the artificial neural network can be compensated. The choice of the duration of the sliding window must necessarily take into account the need for additional processing of data from the output of the neural network in the form of their statistical analysis, the obtained dependencies approximation or smoothing.

References

  1. Gorban’ A.N., Dunin-Barkovskiy V.L., Kirdin A.N. et al. Neyroinformatika [Neuroinformatics]. Novosibirsk, Nauka Publ., 1998, 296 p.
  2. Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika [Neural networks. Theory and practice]. Moscow, Goryachaya liniya Telekom Publ., 2001, 382 p.
  3. Minskiy M., Peypert S. Perseptrony [Perceptrons]. Moscow, Mir Publ., 1971, 261 p.
  4. Petrov A.P. O vozmozhnostyakh pertseptrona [On the capabilities of the perceptron]. Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 1964, no. 6, pp. 25–57.
  5. Slavutskaya E., Slavutskiy L. O vybore struktury iskusstvennykh neyrosetey i algoritmov analiza psikhodiagnosticheskikh dannykh [On choosing the artificial neural networks structure and the algorithms for psycho diagnostic data analyzing]. Kazan pedagogical journal, 2020, no. 5(142), рp. 202–210. DOI: 34772/KPJ.2020.142.5.026.
  6. Slavutskaya E.V., Abrukov V.S., Slavutskii L.A. Prostyye neyrosetevyye algoritmy dlya otsenki latentnykh svyazey psikhologicheskikh kharakteristik mladshikh podrostkov [Simple neuro network algorithms for evaluating latent links of younger adolescent’s psychological characteristics]. Experimental Psychology, 2019, vol. 12, no. 2, pp. 131–142.
  7. Haykin S. Neyronnyye seti: polnyy kurs. 2-ye izd. [Neural networks: a complete course. 2nd]. Prentice Hall, NJ, 2006, 1104 p.
  8. Basodi S., Zhang H., Pan Y. Gradient amplification: An efficient way to train deep neural networks. Big Data Mining and Analytics, 2020, vol. 3(3), pp. 196–207.
  9. Bhattacharya B., Sinha А. Intelligent Fault Analysis in Electrical Power Grids. In: IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). Boston, 2017, pp. 985–990. DOI: 10.1109/ICTAI.2017.00151.
  10. Burton B., Harley R.G. Reducing the computational demands of continually online-trained artificial neural networks for system identification and control of fast processes. IEEE Transactions on Industry Applications, 1998, vol. 34(3), pp. 589–596.
  11. Bychkov A., Slavutskii L., Slavutskaya E. Neural Network for Pulsed Ultrasonic Vibration Control of Electrical Equipment. In: 2020 International Ural Conference on Electrical Power Engineering (UralCon), 2020, pp. 24–28. DOI: 10.1109/UralCon49858.2020.9216248.
  12. Coury D.V., Oleskovicz M., Aggarwal R.K. An ANN routine for fault detection, classification and location in transmission lines. Electrical Power Components and Systems, 2002, no. 30, pp. 1137–1149.
  13. Dharmendra K., Moushmi K., Zadgaonkar A.S. Analysis of generated harmonics due to transformer load on power system using artificial neural network. International journal of electrical engineering, 2013, vol. 4(1), pp. 81–90.
  14. Ivanov S., Nikandrov M., Lariukhin A. Neuro Algorithm Accuracy Evaluation for The Anomalies Detecting in Overcurrent Protection Operation. In: 2021 International Ural Conference on Electrical Power Engineering (UralCon), 2021, pp. 116–120. DOI: 10.1109/UralCon52005.2021.9559614.
  15. Grossberg S. A Path Toward Explainable AI and Autonomous Adaptive Intelligence: Deep Learning, Adaptive Resonance, and Models of Perception, Emotion, and Action. Neurorobot, 2020, vol. 14. DOI: https://doi.org/10.3389/fnbot.2020.00036.
  16. He Z., Lin S., Deng Y., Li X., Qian Q. A rough membership neural network approach for fault classification in transmission lines. International Journal of Electrical Power and Energy Systems, 2014, vol. 61, pp. 429–439.
  17. Jain A., Thoke A.S., Patel R.N. Fault classification of double circuit transmission line using artificial neural network. International Journal of Electrical Systems Science and Engineering, 2008, vol. 1, pp. 230–235.
  18. Jamil M., Kalam A., Ansari A.Q., Rizwan M. Generalized neural network and wavelet transform based approach for fault location estimation of a transmission line. Applied Soft Computing, 2014, vol. 19, pp. 322–332.
  19. Keerthipala W.W.L., Low Tah Chong, Tham Chong Leong. Artificial neural network model for analysis of power system harmonics. IEEE International Conference on Neural Networks, 1995, vol. 2, pp. 905–910.
  20. Kulikov A.L., Loskutov A.A., Mitrovic M. Improvement of the technical excellence of multiparameter relay protection by combining the signals of the measuring fault detectors using artificial intelligence methods. In: International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019), 2019, vol. 124. DOI: https://doi.org/10.1051/e3sconf/201912401039.
  21. Mahanty R.N., Dutta Gupta P.B. Comparison of fault classification methods based on wavelet analysis and ANN. Electric Power Components and Systems, 2006, vol. 34, pp. 47–60.
  22. Mazumdar J., Harley R.G., Lambert F., Venayagamoorthy G. Neural Network Based Method for Predicting Nonlinear Load Harmonics. Power Electronics, IEEE Transactions, 2007, vol. 22(3), pp. 1036–1045. DOI: 10.1109/TPEL.2007.897109.
  23. Montgomery D.C. Design and Analysis of Experiments. John Wiley & Sons, Inc. 1997, 757 p.
  24. Niekerk C.R., Rens A.P.J., Hoffman A.J. Identification of types of distortion sources in power systems by applying neural networks. In: 6th IEEE AFRICON, 2002, vol. 2(2), pp. 829–834.
  25. Osowski S. Neural network for estimation of harmonic components in a power system. IEEЕ Proceedings on Generation, Transmission and Distribution, 1992, vol. 139(2), pp. 129–135.
  26. Rosenblatt F. Principles of neurodynamics. Washington, Spartan books, 1962.
  27. Rumelhart D.E., Hinton G.E., Williams R.J. Learning Internal Representations by Error Propagation. In: Parallel Distributed Processing. Vol. 1. Cambridge, MA: MIT Press, 1986, pp. 318–362.
  28. Silva K.M., Souza B.A., Brito N.S.D. Fault detection and classification in transmission lines based on wavelet transform and ANN. IEEE Transactions on Power Delivery, 2006, vol. 21, pp. 2058–2063.
  29. Slavutskiy A, Slavutskii L., Slavutskaya E. Neural Network for Real-Time Signal Processing: the Nonlinear Distortions Filtering. In: 2021 International Ural Conference on Electrical Power Engineering (UralCon), 2021, pp. 84–88. DOI: 10.1109/UralCon52005.2021.9559619.

Information about the authors

Vyacheslav V. Andreev – 4th Year Student, Faculty of Radio Electronics and Automation, Chuvash State University, Cheboksary, Russia (vyacheslav-andreev-2000@mail.ru).

Leonid A. Slavutskii – Doctor of Physical and Mathematical Sciences, Professor, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (lenya@slavutskii.ru; ORCID: https://orcid.org/0000-0001-6783-2985).

Elena V. Slavutskaya – Doctor of Psychological Sciences, Professor, Department of Psychology and Social Pedagogy, I.Ya. Yakovlev Chuvash State Pedagogical University, Russia, Cheboksary (slavutskayaev@gmail.com; ORCID: https://orcid.org/0000-0002-3759-6288).

For citations

Andreev V.V., Slavutskii L.A., Slavutskaya E.V. FEED FORWARD NEURAL NET SIGNAL PROCESSING: APPROXIMATION AND DECISION MAKING. Vestnik Chuvashskogo universiteta, 2022, no. 1, pp. 14–22. DOI: 10.47026/1810-1909-2022-1-14-22 (in Russian).

Download the full article