DOI: 10.47026/1810-1909-2022-1-5-13
УДК 621.316.91
ББК 31.247
OLEG N. ANDREEV, LIDIA N. VASILEVA
Key words
artificial neural network, digital signal processing, filtering, relay protection
Abstract
Continuous monitoring of the signals harmonic components level in electrical networks is an important task in ensuring high-quality power supply to consumers. This applies to both normal and emergency power system operation modes. One of the nonlinear signal distortions sources in measuring devices are nonlinear operating transformers modes. Saturation effects and hysteresis phenomena in measuring current transformers make it difficult to identify the actual operating parameters of electric power equipment. The paper shows that the apparatus of artificial neural networks can be used to control the nonlinear distortions of industrial frequency signals. The proposed algorithm based on a direct propagation neural network is tested on the example of distortion of current signals in the secondary winding of a measuring transformer. It is shown that it is possible to determine the amplitude, frequency and phase of the signal harmonic components in a “sliding time window” with an accuracy of a few percent. Estimates of the required frequency and interval of signal digitization are made; a comparison is made using the discrete Fourier transform algorithm.
References
- Gurevich, V. Problema elektromagnitnykh vozdeistvii na mikroprotsessornye ustroistva releinoi zashchity. Chast’ 2 [The problem of electromagnetic influences on microprocessor relay protection devices. Part 2]. Komponenty i tekhnologii, 2010, no. 3, pp. 91–96.
- Zasypkin A.S. Releinaya zashchita transformatorov [Power transformer relay protection]. Moscow, Energoatomizdat Publ., 1989, 240 p.
- Koshcheev M.I., Slavutskii A.L., Slavutskii L.A. Prostye neirosetevye algoritmy dlya volnovogo metoda opredeleniya mesta povrezhdeniya elektroseti [Simple neural network algorithms for the wave method of determining the location of power grid damage]. Vestnik Chuvashskogo universiteta, 2019, no. 3, pp. 110–118.
- Kruglov V.V., Borisov V.V. Neironnye seti. Teoriya i praktika[Neural networks. Theory and practice]. Moscow, Goryachaya liniya – telekom Publ., 2002, 382 p.
- Kuzhekov S.L., Degtyarev A.A. O koordinatsii funktsionirovaniya transformatorov toka i ustroistv releinoi zashchity i avtomatiki elektroenergeticheskikh sistem v perekhod-nykh rezhimakh korotkikh zamykanii [On the coordination of current transformers and relay protection and automation operation of electric-power systems in transient short-circuit states]. Elektrotekhnika, 2017, no. 12, pp. 65–72.
- Lyamets Yu.Ya., Nudel’man G.S., Pavlov A.O., Efimov E.B., Zakon’shek Ya. Raspoznavaemost’ povrezhdenii elektroperedachi. Chast’ 3 [Recognition of power transmission damage, parts 3] Elektrichestvo, 2001, no. 12, pp. 9–22.
- Slavutskaya E.V., Slavutskii L.A. O vybore struktury iskusstvennykh neirosetei i algoritmov analiza psikhodiagnosticheskikh dannykh [On choosing the structure of artificial neural networks and algorithms for analyzing psychodiagnostic data]. Kazanskii pedagogicheskii zhurnal, 2020, no. 5, pp. 202–211.
- Slavutskii A.L. Uchet ostatochnoi namagnichennosti v transformatore pri modelirovanii perekhodnykh protsessov [Accounting the residual magnetization in the transformer for the modeling of transients]. Vestnik Chuvashskogo universiteta, 2015, no. 1, pp. 122–130.
- Ameli A., Ayad A., El-Saadany E., Salama M. and Youssef A. A Learning-Based Framework for Detecting Cyber-Attacks Against Line Current Differential Relays. In: IEEE Transactions on Power Delivery, 2020. DOI: 10.1109/TPWRD.2020.3017433.
- Antonov V.I., Naumov V.A., Fomin A.I. et al. Adaptive structural analysis of input signals of digital and relay protection and automation. Russian Electrical Engineering, 2015, vol. 86, pp. 391–397. DOI: 10.3103/S1068371215070032.
- Bychkov A.V., Slavutskii L.A. and Slavutskaya E.V. Neural Network for Pulsed Ultrasonic Vibration Control of Electrical Equipment. In: Int. Ural Conference on Electrical Power Engineering (UralCon), 8936, 2020. DOI: 10.1109/UralCon49858.2020.9216248.
- Bhattacharya B. and Sinha A. Intelligent Fault Analysis in Electrical Power Grids. In: IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), 2017. Available at: https://ieeexplore.ieee.org/document/8372054.
- Cao W., Yin X., Chen Y., Pan Y., Yin X. and Wang Y. The Impact of Zero-Mode Inrush Current of T-Hin on Zero-Sequence Overcurrent Protection and an Improved Protection with the Second Harmonic Restraint. Energies, 2019, vol. 12 (15), 2911. DOI: 10.3390/en12152911.
- Dharmendra K., Moushmi K. and Zadgaonkar A.S. Analysis of generated harmonics due to transformer load on power system using artificial neural network. International journal of electrical engineering, 2013. vol. 4, no 1, pp. 81–90.
- Dillon T.S., Niebur D. Neural Networks Application in Power Systems. London, CRL Ltd. Publ., 1996.
- Dommel H.W. Digital Computer Solution of Electromagnetic Transients in Single- and Multiphase Networks. IEEE Transactions on Power Apparatus and Systems, 1969, vol. 88, no. 4, pp. 388–399.
- Hassan S.R., Rehman A., Shabbir N., Unbreen A. Comparative Analysis of Power Quality Monitoring Systems. NFC-IEFR Jornal of Engineering and Scientific Research, 2020. DOI: 10.24081/nijesr.2019.1.0004.
- Keerthipala W., Chong L.T. and Leong T.C. Artificial neural network model for analysis of power system harmonics. IEEE International Conference on Neural Networks, 1995, vol. 2, pp. 905–910.
- Kezunovic M. A Survey of Neural Net Applications to Protective Relaying and Fault Analysis. Engineering Intelligent Systems, 1997, vol. 5, no. 4, pp. 185–192.
- Kulikov A. L., Loskutov A.A. and Mitrovic M. Improvement of the technical excellence of multiparameter relay protection by combining the signals of the measuring fault detectors using artificial intelligence methods. International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019), 2019, no. 124. DOI: 10.1051/e3sconf/201912401039.
- Kumar K., Thakur G.S.M. Advanced Applications of Neural Networks and Artificial Intelligence: A Review. International Journal of Information Technology and Computer Science, 2012, no. 6, pp, 57–68. DOI: 10.5815/ijitcs.2012.06.08.
- Mazumdar J., Harley R.G., Lambert F., Venayagamoorthy G. Neural Network Based Method for Predicting Nonlinear Load Harmonics. Power Electronics, IEEE Transactions, 2007, vol. 22, no. 3, pp. 1036–1045. DOI: 10.1109/TPEL.2007.897109.
- Milanovic J., Ball R.F., Howe W., Preece R., Bollen M.H.J., Elphick S., Cukalevski N. International Industry Practice on Power-Quality Monitoring. IEEE Transactions on Power Delivery, vol. 29, pp. 934-941, 2014.
- Samarasinghe S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. 1st Boca Raton, Auerbach Publications, 2006, 570 p.
- Schmidhuber J. Deep Learning in Neural Networks: An Overview. Neural Networks, 2014, no. 61, pp. 85–117. DOI: 10.1016/j.neunet.2014.09.003.
- Slavutskiy A., Slavutskii L., Slavutskaya E. Neural Network for Real-Time Signal Processing: the Nonlinear Distortions Filtering. In: International Ural Conference on Electrical Power Engineering (UralCon), 2021, pp. 84–88. DOI: 10.1109/UralCon52005.2021.9559619.
- Rosenblatt F. Principles of neurodynamics. Washington D.C., Spartan books, 1962.
Information about the authors
Oleg N. Andreev – Post-Graduate Student, Department of the Management and Computer Science in Technical Systems, Chuvash State University, Russia, Cheboksary (helga013@yandex.ru; ORCID: https://orcid.org/0000-0003-2974-2502).
Lidia N. Vasileva – Candidate of Pedagogical Sciences, Associate Professor, Department of the Management and Computer Science in Technical Systems, Chuvash State University, Russia, Cheboksary (oln2404@mail.ru; ORCID: https://orcid.org/0000-0002-2809-9044).
For citations
Andreev O.N., Vasileva L.N. NEURAL NETWORK SIGNAL PROCESSING WITH NONLINEAR DISTORTIONS IN A “SLIDING TIME WINDOW”. Vestnik Chuvashskogo universiteta, 2022, no. 1, pp. 5–13. DOI: 10.47026/1810-1909-2022-1-5-13 (in Russian).
Download the full article