Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2022, no. 1. Topic of this Issue: Electrical Technology and Power Engineering  /  TRANSIENT ANALYSIS OF ACTIVE-CAPACITIVE CIRCUITS WHEN CAPACITORS ARE CONNECTED IN SERIES

TRANSIENT ANALYSIS OF ACTIVE-CAPACITIVE CIRCUITS WHEN CAPACITORS ARE CONNECTED IN SERIES

DOI: 10.47026/1810-1909-2022-1-156-170

УДК 621.331

ББК 31.28

ALEXANDER S. SEREBRYAKOV, VLADIMIR L. OSOKIN, DMITRY E. DULEPOV

Key words

reactive power compensation installation, numerical method for solving differential equations, classical method for calculating transient processes, Runge–Kutta method

Abstract

Active-capacitive and inductive-capacitive circuits with series connection of capacitors are widely used in the electric power industry to compensate for reactive power. In traction power supply systems for railways electrified with alternating current, compensation units perform two tasks: under heavy load, they maintain a given railway throughput, and under low load, they reduce power losses in the traction network. Therefore, the installation of compensation in the traction network must be at least two-stage, i.e. have two reactive power values and, accordingly, two capacitance values. The value of reactive power in such installations is regulated in steps by switching individual sections of capacitors, which are connected in series. When switching capacitors in series, previously unknown specific transients can occur. They cause significant overvoltages on the capacitors.

It is shown that in some cases the calculation of transient processes in active-capacitive circuits with capacitors connected in series using the well-known classical method gives results that differ from the actual values.

The purpose of the article is to provide a previously unknown theoretical basis for calculating transient processes in electrical circuits containing series-connected capacitors using the example of active-capacitive DC circuits.

The studies carried out are of practical importance, since in modern electrical installations, thyristor switches are used as switching equipment, in which the shunting of one capacitor in the compensating installation occurs at the maximum voltage on the operating capacitor. In this case, overvoltages exceeding the assumed values ​​are possible, in the limit up to double the amplitude value of the supply voltage. A theoretical substantiation of this phenomenon is given by the example of the analysis of the transient process in an active-capacitive circuit with two consecutively connected capacitors.

References

  1. Bessonov L.A. Teoreticheskie osnovy elektrotekhniki. Elektricheskie tsepi [Theoretical foundations of electrical engineering. Electric circuits: a textbook for bachelors]. Moscow, Yurayt Publ., 2014, 701 p.
  2. German L.A., Serebryakov A.S., Maksimova A.A. Fil’trokompensiruyushchie ustanovki v tyagovykh setyakh peremennogo toka [Filter-compensating installations in AC traction networks]. Vestnik nauchno-issledovatel’skogo instituta zheleznodo-rozhnogo transporta, 2016, no. 1, p. 26.
  3. German L.A., Serebryakov A.S., Osokin V.L., Yakunin D.V. Pereklyuchaemaya fil’trokompensiruyushchaya ustanovka v tyagovoi seti peremennogo toka [Switchable filter-compensating installation in AC traction network]. Vestnik nauchno-issledovatel’skogo instituta zheleznodorozhnogo transporta, 2020, no. 2, pp. 80–87. DOI: 10.21780/2223-9731-2020-79-2-80-87.
  4. German L.A., Serebryakov A.S., Dulepov D.E. Fil’trokompensiruyushchie ustanovki v sistemakh tyagovogo elektrosnabzheniya zheleznykh dorog [Filter-compensating installations in traction power supply systems of railways]. Knyaginino, 2017, 402 p.
  5. Dovgun V.P., Egorov D.E., Vazhenina I.G., Sinyagovskii A.F. Reguliruemye fil’trokompensiruyushchie ustroistva dlya sistem tyagovogo elektrosnabzheniya [Adjustable filter-compensating devices for traction power supply systems]. Omskii nauchnyi vestnik, 2018, no. 5 (161), pp. 45–50.
  6. Domanskii I.V. Rezhimy raboty sistemy tyagovogo elektrosnabzheniya peremennogo toka s ustroistvami kompensatsii reaktivnoi moshchnosti [Operating modes of the AC traction power supply system with reactive power compensation devices]. Elektrotekhnika i elektromekhanika, 2015, no. 3, pp. 59–66.
  7. Ivanov I.I., Solov’ev G.I., Frolov V.Ya. Elektrotekhnika i osnovy elektroniki. 9-e izd. [Electrical engineering and fundamentals of electronic. 9th]. St. Petersburg, Lan’ Publ., 2017, 736 p.
  8. Kasatkin A.S., Nemtsov M.V. Kurs elektrotekhniki. 8-e izd. [Electrical engineering course. 8th]. Moscow, Higher School Publ., 2005,542 p.
  9. Lazuta I.V., Rebrova I.A. Osnovy elektrotekhniki i elektroniki [Fundamentals of electrical engineering and electronics: a tutorial]. Omsk, SibADI Publ., 2018. Available as: http://bek.sibadi. org/fulltext/esd636.pdf (Accessed Date 2021, Dec. 1).
  10. Neiman L.R., Demirchyan K.S. Teoreticheskie osnovy elektrotekhniki: v 2 t. 3-e izd. pererab. i dop. [Theoretical foundations of electrical engineering. 2 vols. 3rd]. Leningrad, Energoizdat Publ., 1981, vol. 1, 536 p.
  11. Serebryakov A.S., German L.A., Osokin V.L., Dmitrieva N.Yu. Trekhstupenchataya fil’trokompensiruyushchaya ustanovka tyagovoi seti peremennogo toka [Three-stage filter-compensating installation of AC traction network]. Patent RF, no. 2704023, 2019.
  12. Serebryakov A.S., German L.A., Dulepov D.E., Semenov D.A. Ustroistvo pereklyuchaemoi odnofaznoi poperechnoi emkostnoi kompensatsii v tyagovoi seti peremennogo toka [Device for switchable single-phase transverse capacitive compensation in AC traction network]. Patent RF, no. 2475912, 2013.
  13. Serebryakov A.S., German L.A., Osokin V.L., Dulepov D.E., Saevich V.L. Pereklyuchaemaya fil’trokompensiruyushchaya ustanovka [Switchable filter-compensating installation]. Patent RF, no. 2739329, 2020.
  14. Rebrova I.A. Raschet ustanovivshikhsya rezhimov v lineinykh elektricheskikh tsepyakh [Calculation of steady-state modes in linear electrical circuits: teaching aid]. Omsk, SibADI Publ., 2013.
  15. Serebryakov A.S. Mathcad i reshenie zadach elektrotekhniki 2-e izd. [Mathcad and electrical engineering problem solving. 2nd]. Moscow, 2019, 568 p.
  16. Serebryakov A.S. Elektrotekhnika i elektronika. laboratornyi praktikum na Electronics Workbench i Multisim [Electrical and Electronics. laboratory practice at Electronics Workbench and Multisim. Tutorial.] Moscow, Higher School Publ., 2012, 335 p.
  17. Serebryakov A.S., German L.A., Osokin V.L. Issledovanie perekhodnykh protsessov v pereklyuchaemoi fil’trokompensiruyushchei ustanovke [Investigation of transient processes in a switchable filter-compensating installation]. Intellektual’naya elektrotekhnika, 2018, no. 2, pp. 84–92.
  18. Serebryakov A.S., German L.A., Yakunin D.V., Maralova V.A., Maksimova A.A. Dvukhstupenataya ustanovka poperechnoi emkostnoi kompensatsii v tyagovykh setyakh zheleznykh dorog [Two-stage installation of transverse capacitive compensation in traction networks of railways]. Elektronika i elektrooborudovanie transporta, 2016, no. 4, pp. 27–31.
  19. Serebryakov A.S. Perekhodnyi protsess v ustanovke kompensatsii reaktivnoi moshchnosti s posledovatel’nym vklyucheniem kondensatorov pri rasshuntirovanii odnogo iz nikh [Transient process in the installation of reactive power compensation with sequential switching on of capacitors when shunting one of them]. Izvestiya SPbGETU LETI, 2021, no. 4, pp. 84–91.
  20. Akagi H., Watanabe E.H., Aredes M. Instantaneous power theory and applications to power conditioning. Hoboken, N.J., Wiley, 2007, 379 p.
  21. Das J. Passive filters-potentialities and limitations. IEEE Transactions on Industry Applications, 2004, vol. 40, no. 1, pp. 232–241.
  22. Kim H., Blaabjerg F., Bak-Jensen D., Cho J. Instantaneous power compensation in three-phase systems by using p-q-r theory. In: The IEEE 32nd Annual Power Electronics Specialists Conference, PESC 2001, Vancouver, Canada, June 17-21, 2001. Vancouver, 2001, vol. 2, pp. 478–485.
  23. Tan P.-C., Loh P.C., Holmes D.G. A robust multilevel hybrid compensation system for 25-kV electrified railway applications. IEEE Transactions on Power Electronics, 2004, vol. 19, iss. 4, pp. 1043–1052. DOI: 10.1109/TPEL.2004.830038.

Information about the authors

Alexander S. Serebryakov – Doctor of Technical Sciences, Professor, Department of Electrification and Automation, Nizhny Novgorod State Engineering and Economic University, Russia, Knyaginino (a.sereb@mail.ru; ORCID: https://orcid.org/0000-0002-7455-2348).

Vladimir L. Osokin – Candidate of Technical Sciences, Associate Professor, Department of Electrification and Automation, Nizhny Novgorod State Engineering and Economic University, Russia, Knyaginino (osokinvl@mail.ru; ORCID: https://orcid.org/0000-0001-8772-4252).

Dmitry E. Dulepov – Candidate of Technical Sciences, Associate Professor, Department of Electrification and Automation, Nizhny Novgorod State Engineering and Economic University, Russia, Knyaginino (dulepov.86@mail.ru; ORCID: https://orcid.org/0000-0003-1044-1865).

For citations

Serebryakov A.S., Osokin V.L., Dulepov D.E. TRANSIENT ANALYSIS OF ACTIVE-CAPACITIVE CIRCUITS WHEN CAPACITORS ARE CONNECTED IN SERIES. Vestnik Chuvashskogo universiteta, 2022, no. 1, pp. 156–170. DOI: 10.47026/1810-1909-2022-1-156-170 (in Russian).

 Download the full article