Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2022, no. 1. Topic of this Issue: Electrical Technology and Power Engineering  /  VIBRATION DIAGNOSTICS SYSTEM FOR ELECTRIC MOTOR WITH ACTIVE ULTRASONIC SENSING

VIBRATION DIAGNOSTICS SYSTEM FOR ELECTRIC MOTOR WITH ACTIVE ULTRASONIC SENSING

DOI: 10.47026/1810-1909-2022-1-34-43

УДК 621.31:658.588.2:53.082.4:004.032.26

ББК 32.873

ANATOLY V. BYCHKOV

Key words

electric motor, complex vibration control, ultrasonic measurements, starting and steady state conditions, shaft precession

Abstract

At present, part of the fixed assets of electric grid infrastructure is becoming obsolete in the Russian Federation. It leads to an inevitable decrease of operational reliability of single electrical equipment and power-supply systems as a whole. At the same time the requirement to the reliability for most electrotechnical complexes is the main one. As a result, diagnostics is the most important process in electrical equipment’s operation. Diagnostics is based on measurements, control and analysis of a large number of equipment’s characteristics and parameters. One of the important components of diagnostics is vibration control, as it allows detecting a large number of mechanical defects and defects in electrical or magnetic parts of electrical equipment. Vibration control, as a means of malfunctions diagnosis and ensuring the stable operation of electrical equipment, is most often carried out by contact sensors. The paper describes the experimentally tested vibration diagnostics system for an electric motor, which is based on remote ultrasonic measurements together with contact measurements. It is shown that remote measurements allow controlling moving elements and having more capabilities than contact ones. A significant difference between vibration signals obtained by different methods was found: using traditional contact sensors installed on the engine body and using active ultrasonic sensing of rotating elements. A comparative analysis of information obtained from contact and noncontact sensors is proposed for the diagnostics of electrical equipment. The analysis was carried out both in starting and steady state operation modes of the electric motor. The joint use of contact and remote measurements significantly increases the informative value and data reliability of technical condition forecasts.

References

  1. Balitskii F.Ya., Sokolova A.G. Diagnosticheskaya informativnost’ polnykh spektrov i orbit pri analize signalov otnositel’nykh vibrosmeshchenii vala v oporakh skol’zheniya [Diagnostic information content of full spectra and orbits in the analysis of signals of relative vibration displacements of the shaft in sliding bearings]. Vestnik nauchnotekhnicheskogo razvitiya, 2010, no. 2(30), pp. 30–39.
  2. Bychkov A.V., Slavutskii L.A. Vozmozhnosti korrelyatsionnoi obrabotki impul’snykh ul’trazvukovykh signalov pri beskontaktnom vibrokontrole oborudovaniya elektroenergetiki [Capabilities of correlation processing of pulse ultrasonic signals for noncontact vibration control of electric power industry equipment]. Vestnik Chuvashskogo universiteta, 2018, no. 3, pp. 24–32.
  3. Gavrilin A.N., Moizes B.B. Diagnostika tekhnologicheskikh sistem [Diagnostics of technological systems: a tutorial]. Tomsk, 2014, Part 2, 128 p.
  4. Gordeev B.A., Novozhilov M.V., Obraztsev D.I. Primenenie ul’trazvukovogo metoda v vibrodiagnostike legkovykh avtomobilei [Application of the ultrasonic method in vibration diagnostics of passenger cars]. Metrologiya, 2000, no. 6, pp. 33–36.
  5. Kostyukov V.N., Naumenko A.P. Osnovy vibroakusticheskoi diagnostiki i monitoringa mashin [Fundamentals of vibroacoustic diagnostic and monitoring of machines]. Omsk, Omsk State Technical University Publ, 2011, 360 p.
  6. Kostyukov V.N., Boichenko S.N., Pavlenkov D.V. Otsenka vozmozhnosti ispol’zovaniya fraktal’nogo analiza dlya tselei diagnostiki mashinnogo oborudovaniya [Assessment of the possibility of using fractal analysis for the purpose of diagnostics of machinery]. In: Ekspluatatsionnaya nadezhnost’ lokomotivnogo parka i povyshenie effektivnosti tyagi poezdov: materialy Vseros. nauch.-tekhn. konf. s mezhdunar. uchastiem [Proc. of Russ. Sci. Conf. «Operational reliability of a locomotive fleet and increasing the efficiency of train traction»]. Omsk, Omsk State Transport University Publ., 2012, pp. 153–157.
  7. Matyushkova O.Yu., Tetter V.Yu. Sovremennye metody vibroakusticheskogo diagno-stirovaniya [Modern methods of vibroacoustic diagnostics]. Omskii nauchnyi vestnik, 2013, 3(123), pp. 294–299.
  8. Nikolaev A.A., Slavutskii L.A. Distantsionnyi kontrol’ ul’trazvukovykh magnito-striktsionnykh preobrazovatelei protivonakipnykh ustroistv [Remote control of ultrasonic magtetostrictive transducers for scale distortion devices]. Vestnik Chuvashskogo universiteta, 2008, no. 2, pp. 228–232.
  9. Pasynkova I.A. Vynuzhdennye kolebaniya neuravnoveshennogo rotora v neizotropnykh oporakh [Forced vibrations of an unbalanced rotor]. Vestnik Sankt-Peterburgskogo universiteta. Ser. Matematika. Mekhanika. Astronomiya, 2014, vol. 1, no. 2, pp. 292–302.
  10. Rusov V.A. Diagnostika defektov vrashchayushchegosya oborudovaniya po vibratsionnym signalam [Diagnosis of defects in rotating equipment by vibration signals]. Perm, DimRus Publ., 2012, 200 p.
  11. Slavutskii L.A., Kostyukov A.S. Statisticheskaya pogreshnost’ ul’trazvukovogo tsif-rovogo urovnemera s chastotno-fazovoi modulyatsiei signala [Statistical error of an ultrasonic digital level meter with frequency-phase modulation of the signal]. Pribory i sistemy. Upravlenie, kontrol’, diagnostika, 2009, no. 8, pp. 35–37.
  12. Fridman A. Chto takoe «Krest-faktor»? I pochemu on ispol’zuetsya [What is Crest Factor? And why it is used]. Vibratsionnaya diagostika, 2005, no. 1, pp. 30–31.
  13. Alikhani A.M., Vahedi A., Khlyupin P.A. Induction Motor Fault Detection in ESP Systems Based on Vibration Measurements. Smart Innovation, Systems and Technologies, 2022. vol. 232, pp. 497–505. DOI: 10.1007/978-981-16-2814-6_43.
  14. Bentley D.E., Hatch C.T., Grisson B. Fundamentals of rotating machinery diagnostics. Minden, NV, Bentley Pressurized Bearing Press, 2002. 726 p.
  15. Borwein P., Ferguson R. Polyphase sequences with low autocorrelation. IEEE Transactions on information theory, 2005, vol. 51, iss. 4, pp. 1564–1567. DOI: 10.1109/TIT.2004.842778.
  16. Bychkov A., Slavutskii L., Slavutskaya E. Neural network for pulsed ultrasonic vibration control of electrical equipment. In: Proceedings 2020 Int. Ural Conf. on Electrical Power Engineering (UralCon), 2020, pp. 24–28. DOI: 10.1109/UralCon49858.2020.9216248.
  17. Bychkov A., Bychkova I., Slavutskii L. Active Ultrasonic Vibration Control of Electrical Equipment: Correlation Signal Processing. In: Proceedings 2019 Int. Ural Conference on Electrical Power Engineering (UralCon). 2019. pp. 244–248. DOI: 10.1109/URALCON.2019.8877666.
  18. Gaud D.K., Agrawal P., Jayaswal P. Fault diagnosis of rolling element bearing based on vibration and current signatures: An optimal network parameter. In: Proceedings 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 4065–4069. DOI: 10.1109/ICEEOT.2016.7755478.
  19. Kazutaka A., Kenju O., Jing-Yang Ko. Self-mixing laser Doppler vibrometry with high optical sensitivity: Application to real-time sound reproduction. New Journal of Physics, 2003, no. 5(1), pp. 8.1–8.9. DOI: 10.1088/1367-2630/5/1/308.
  20. Krishnareddy G., Venkatesham B., Ramireddy G. Vibration diagnosis of turbomachinery coupled with induction motor. Vibroengineering PROCEDIA, 2020, no. 35(3), pp. 1–6. DOI: 10.21595/vp.2020.21768.
  21. Ribeiro R.F., Alves de Almeida F., Gomes G.F. Fault classification in three-phase motors based on vibration signal analysis and artificial neural networks. Neural Computing and Applications, 2020, no. 32, pp. 15171–15189. DOI: 10.1007/s00521-020-04868-w.
  22. Yadarova O.N., Okhotkin G.P., Slavutskii L.A. A Control System of a Fan Drive Based on Airflow Doppler Ultrasonic Control. Russian Electrical Engineering, 2017, vol. 88, no. 7, pp. 420–422.
  23. Zarei J., Tajeddini M.A., Karimi H.R. Vibration analysis forbearing fault detection and classification using an intelligent filter. Mechatronics, 2014. vol. 24, no. 2, pp. 151–157. DOI: 10.1016/j.mechatronics.2014.01.003.

Information about the author

Anatoly V. Bychkov – Post-Graduate Student, Department of Automatics and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (bav.xlab@gmail.com; ORCID: https://orcid.org/0000-0003-2674-8626).

For citations

Bychkov A.V. VIBRATION DIAGNOSTICS SYSTEM FOR ELECTRIC MOTOR WITH ACTIVE ULTRASONIC SENSING. Vestnik Chuvashskogo universiteta, 2022, no. 1, pp. 34–43. DOI: 10.47026/1810-1909-2022-1-34-43 (in Russian).

Download the full article