Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2022, no. 3. Topic of this Issue: Electrical Technology and Power Engineering  /  INCREASING THE EFFICIENCY OF RENEWABLE ENERGY SOURCES IN A VIRTUAL POWER PLANT BASED ON MULTI-AGENT CONTROL

INCREASING THE EFFICIENCY OF RENEWABLE ENERGY SOURCES IN A VIRTUAL POWER PLANT BASED ON MULTI-AGENT CONTROL

DOI: 10.47026/1810-1909-2022-3-103-113

УДК 620.92

ББК 31.27-02

Elena N. SOSNINA, Andrey V. SHALUKHO, Natalya I. ERDILI

Key words

virtual power plant, distributed generation, renewable energy sources, energy exchange management, multi-agent approach

Abstract

The article is devoted to the problem of increasing the efficiency of renewable energy sources (RES). The development of distributed energy based on renewable energy sources is one of the most important areas for ensuring the energy security of consumers and reducing the anthropogenic load on the environment. Combining distributed sources of electricity into virtual power plants (VPP) with a general control system makes it possible to use the potential of renewable energy sources more efficiently. An approach to the management of energy exchange in a virtual power plant (VPP) based on a multi-agent system (MAS) is proposed and substantiated, taking into account the criterion of environmental friendliness of distributed generation (DG) installations and ensuring the efficient use of environmentally friendly renewable energy sources. Algorithms for the operation of generation and load agents have been developed to control energy exchange in a virtual power plant based on a multi-agent system. The algorithms differ in taking into account the environmental friendliness rating of distributed generation installations and allow you to maximize the renewable energy sources potential, ensuring the balance of electrical power in the virtual power plant and minimal losses during its transmission. A 20 kV virtual power plant is considered, combining 10 decentralized power supply systems (DPSS) with sources of distributed generation of various types and having the ability to exchange electricity with a centralized power system (CES). With the help of software complexes JADE and “RastrWin”, a study of the effectiveness of the method for controlling energy exchange in virtual power plant based on multi-agent system was carried out, taking into account the environmental rating of distributed generation installations. The results of the research showed that the use of a multi-agent approach to control the virtual power plant made it possible to increase the share of the use of renewable energy sources and reduce power losses in the electrical network.

References

  1. Barakhtenko E.A., Voropai N.I., Sokolov D.V. Sovremennoe sostoyanie issledovanii v oblasti upravleniya integrirovannymi energeticheskimi sistemami [Current state of research in the management field of integrated energy systems]. Izvestiya Rossiiskoi akademii nauk. Energetika, 2021, no. 4, pp. 4–23.
  2. Voropai N.I. Ot plana GOELRO k global’nomu elektroenergeticheskomu internet [From the GOELRO plan to the global electricity Internet]. Elektrichestvo, 2020, no. 12, pp. 9–13.
  3. Loskutov A. B. Problemy perekhoda elektroenergetiki na tsifrovye tekhnologii [Problems of electric power industry transition to digital technologies]. Intellektual’naya elektrotekhnika [Smart electrical engineering], 2018, no.1, pp. 9 –27.
  4. Maksimov A. Vvod novykh elektrostantsii na baze VIE v ramkakh programmy podderzhki do 2035 goda mozhet vyrasti do 8 GVT [Commissioning of new power plants based on RES under the support program until 2035 can grow to 8 GW]. Available at: https://minenergo.gov.ru/node/21596 (Accessed Date 2021, Nov. 22).
  5. Masleeva O.V., Erdili N.I., Borisov S.E. Otsenka material’nogo potoka zhiznennogo tsikla vozobnovlyaemykh istochnikov energii [Life cycle assessment of renewable energy sources material flow]. In: Aktual’nye problemy elektroenergetiki: st. nauch. tekhn. konf. [Actual problems of the electric power industry]. Nizhny Novgorod, 2020, pp. 303–309.
  6. Postanovlenie Pravitel’stva RF № 320 ot 21.03.2020 O vnesenii izmenenii v nekotorye akty Pravitel’stva Rossiiskoi Federatsii po voprosam funktsionirovaniya aktivnykh energeticheskikh kompleksov [About making changes to some acts of the Russian Federation Government of the active energy complexes functioning issues]. Available at: http://publication.pravo.gov.ru/Document/ View/0001202003240012 (Accessed Date 2021, Nov. 20).
  7. Sosnina E.N., Shalukho A.V., Kechkin A.Yu. Optimizatsiya elektrotekhnicheskogo kompleksa virtual’noi elektrostantsii s istochnikami raspredelennoi generatsii [Optimization of the electrical complex of a virtual power plant with distributed generation sources]. In: Fedorovskie chteniya – 2017: materialy mezhdunar. nauchno-prakticheskoi konferentsii MEI [Proc. of Int. Sci. Conf. «Fedorov readings – 2017»]. Moscow, 2017, pp. 312–320.
  8. Tekhnicheskie trebovaniya k generiruyushchemu oborudovaniyu uchastnikov optovogo rynka [Technical requirements for generating equipment of wholesale market participants]. Available at: https://www.so-ups.ru/fileadmin/files/company/markets/2019/tq_010119.pdf (Accessed Date 2021, Nov. 20).
  9. Fortov V.E., Makarov A.A. Kontseptsiya intellektual’noi elektroenergeticheskoi sistemy Rossii s aktivno-adaptivnoi set’yu [The concept of an intelligent electric power system in Russia with an active-adaptive grid]. Moscow, 2012, 235 p.
  10. Chang W., Dong W., Zhao L., Yang Q. Model Predictive Control based Energy Collaborative Optimization Management for Energy Storage System of Virtual Power Plant, in Proc.2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). pp. 112–115. doi: 10.1109/DCABES50732.2020.00037.
  11. Hanan M., Yousaf W., Ai X., Asghar E., Javed M. Y., Salman S. Multi-operating Modes Based Energy Management Strategy of Virtual Power Plant, in Proc.2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). 2018, pp. 1–6. doi: 10.1109/EI2.2018.8582406.
  12. Kasaei M. J., Gandomkar M., Nikoukar J. Optimal management of renewable energy sources by virtual power plant, Renewable Energy, vol. 114, pp. 1180–1188, 2017.
  13. Meliani M., Barkany A. el, Abbassi I. el, Darcherif A.M., Mahmoudi M. Control system in the smart grid: State of the art and opportunities, in Proc.2020 IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), 2020. doi: 10.1109/LOGISTIQUA49782.2020.9353878.
  14. Yu J., Jiao Y., Ni M., Yu W. VPP frequency response feature based on distributed control strategy, in Proc.2016 China International Conference on Electricity Distribution (CICED). 2016, pp.1–5. doi: 10.1109/CICED.2016.7576386.
  15. Zamani A.G., Zakariazadeh A., Jadid S., Kazemi A., Stochastic operational scheduling of distributed energy resources in a large scale virtual power plant, International Journal of Electrical Power & Energy Systems, 2016, vol. 82, pp. 608–620.

Information about the authors

Elena N. Sosnina – Doctor of Technical Sciences, Professor, Electric Power Engineering, Power Supply and Power Electronics Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Russia, Nizhny Novgorod (sosnyna@yandex.ru; ORCID: https://orcid.org/0000-0001-6207-9103).

Andrey V. Shalukho – Candidate of Technical Sciences, Associate Professor, Electric Power Engineering, Power Supply and Power Electronics Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Russia, Nizhny Novgorod (shaluho.andrey@mail.ru; ORCID: https://orcid.org/0000-0002-8235-0658).

Natalya I. Erdili – Assistant Lecturer, Electric Power Engineering, Power Supply and Power Electronics Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Russia, Nizhny Novgorod (erdili.ni@yandex.ru; ORCID: https://orcid.org/0000-0002-2994-5759).

For citations

Sosnina E.N., Shalukho A.V., Erdili N.I. INCREASING THE EFFICIENCY OF RENEWABLE ENERGY SOURCES IN A VIRTUAL POWER PLANT BASED ON MULTI-AGENT CONTROL. Vestnik Chuvashskogo universiteta, 2022, no. 3, pp. 103–113. DOI: 10.47026/1810-1909-2022-3-103-113 (in Russian).

Download the full article