Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2022, no. 3. Topic of this Issue: Electrical Technology and Power Engineering  /  NEURAL NETWORK MODELING OF RELAY PROTECTION WITH A TIME DELAY

NEURAL NETWORK MODELING OF RELAY PROTECTION WITH A TIME DELAY

DOI: 10.47026/1810-1909-2022-3-53-60

УДК 621.316.91

ББК 31.247

Sergey O. IVANOV, Maxim V. NIKANDROV, Leonid A. SLAVUTSKII

Key words

neural network modeling, multilayer perceptron, overcurrent protection, time delay, three-phase electrical grids

Abstract

Modern electric power facilities – stations and high-voltage substations – have become digital objects with the active use of high-speed local networks directly involved in the technological process. Management, analysis and control of information exchange in the digital substation of the power system require the development of new means and approaches. For these purposes, machine learning methods can be used, in particular the apparatus of artificial neural networks (ANN). The paper shows the possibilities of using direct propagation ANNs (multilayer perceptrons) for modeling and identifying anomalies in the operation modes of relay protection with a time delay. The results of training and testing of the ANN are presented on the example of analyzing the operation of the over current protection in the “sliding time window” mode in a three-phase electrical network. The proposed neuroalgorithm and configuration of the ANN can be used to control the modes and accuracy of relay and cybernetic defenses.

References

  1. Koshcheev M.I., Laryukhin A.A., Slavutskii A.L. Ispol’zovanie adaptivnykh neiroalgoritmov dlya raspoznavaniya anomal’nykh rezhimov sistem vtorichnogo oborudovaniya elektroenergetiki [Application of Adaptive Neuro Algorithms for Recognition of Anomalous Behaviour of Secondary Equipment Systems in Electric Power Industry]. Vestnik Chuvashskogo universiteta, 2019, no. 1, pp. 47–58.
  2. Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika. [Artificial neural networks. Theory and practice]. Moscow, Goryachaya liniya, Telekom, 2001, 382 p.
  3. Andreev O.N., Slavutskii L.A., Slavutskiy A.L. Neural network in a “sliding window” for power grids signals structural analysis. In: IOP Conference Series: Earth and Environmental Science: 4, 2022, p. 012054. DOI: 10.1088/1755-1315/990/1/012054.
  4. Burton B., Harley R.G. Reducing the computational demands of continually online-trained artificial neural networks for system identification and control of fast processes. IEEE Transactions on Industry Applications, 1998, vol. 34(3), pp. 589–596.
  5. Coury D. V., Oleskovicz M., Aggarwal R.K. An ANN routine for fault detection, classification and location in transmission lines. Electrical Power Components and Systems, 2002, no. 30, pp. 1137–1149.
  6. Dharmendra K., Moushmi K., Zadgaonkar A.S. Analysis of generated harmonics due to transformer load on power system using artificial neural network. International journal of electrical engineering, 2013, no. 4, 1, pp. 81–90
  7. Grammatikis P.R., Sarigiannidis P., Sarigiannidis A., Margounakis D. et al. An Anomaly Detection Mechanism for IEC 60870-5-104. In: 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 2020, pp. 1–4. DOI: 10.1109/MOCAST49295.2020.9200285.
  8. Grossberg S. A Path Toward Explainable AI and Autonomous Adaptive Intelligence: Deep Learning, Adaptive Resonance, and Models of Perception, Emotion, and Action. Neurorobot., 2020, vol. 14. DOI: https://doi.org/10.3389/fnbot.2020.00036.
  9. He Z., Lin S., Deng Y., Li X., Qian Q. A rough membership neural network approach for fault classification in transmission lines. International Journal of Electrical Power and Energy Systems, 2014, no. 61, pp. 429–439.
  10. Ivanov S., Nikandrov M., Lariukhin A. Neuro Algorithm Accuracy Evaluation for the Anomalies Detecting in Overcurrent Protection Operation. In: International Ural Conference on Electrical Power Engineering (UralCon), 2021, pp. 116–120. DOI: 10.1109/UralCon52005.2021.9559614.
  11. Jain A., Thoke A.S., Patel R.N. Fault classification of double circuit transmission line using artificial neural network. International Journal of Electrical Systems Science and Engineering, WASET, USA, 2008, no. 1, pp. 230–235.
  12. Keerthipala W.W.L., Low Tah Chong, Tham Chong Leong. Artificial neural network model for analysis of power system harmonics. IEEE International Conference on Neural Networks, 1995, no. 2, pp. 905–910.
  13. Ince T., Kiranyaz S., Eren L., Askar M., Gabbouj Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks. IEEE Transactions on Industrial Electronics, 2016, vol. 63, no. 11, pp. 7067–7075. DOI: 10.1109/TIE.2016.2582729.
  14. Jayamaha D.K.J.S., Lidula N.W.A., Rajapakse A.D. Wavelet-multi resolution analysis based ANN architecture for fault detection and localization in DC microgrids. IEEE Access, 2019, vol. 7, pp. 145371–145384.
  15. Kulikov A.L., Loskutov A.A., Mitrovic M. Improvement of the technical excellence of multiparameter relay protection by combining the signals of the measuring fault detectors using artificial intelligence methods. In: International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019), 2019, no. 124. DOI: https://doi.org/10.1051/e3sconf/201912401039.
  16. Laruhin A., Nikandrov M., Slavutskii Anomalous modes recognizing secondary equipment in electric power industry: adaptive neuro algorithms. In: 2019 International Ural conference on electrical power engineering: Proceedings URALCON, 2019, pp. 399–403.
  17. Lu C., Wang Z., Zhou B. Intelligent Fault Diagnosis of Rolling Bearing Using Hierarchical Convolutional Network Based Health State classification. Advanced Engineering Informatics, 2017, vol. 32, pp. 139–151. DOI: https://doi.org/10.1016/j.aei.2017.02.005.
  18. Niekerk C.R., Rens A.P.J., Hoffman A.J. Identification of types of distortion sources in power systems by applying neural networks. 6th IEEE AFRICON, 2002, vol. 2, no. 2, pp. 829–834.
  19. Oh J. W., Jeong J. Convolutional neural network and 2-D image based fault diagnosis of bearing without retraining. In: Proceedings of the 2019 3rd International Conference, 2019, pp. 134–138.
  20. Rosenblatt F. Principles of neurodymamics.Washington D.C.: Spartan books, 1962.
  21. Voropai N.I., Kolosok I.N., Korkina E.S., Osak A.B. Issues of cybersecurity in electric power systems. Energy systems research, 2020, vol. 3, no. 2(10), pp. 19–28.
  22. Yadav A., Dash Y. An overview of transmission line protection by artificial neural network: fault detection, fault classification, fault location, and fault direction discrimination // Advances in Artificial Neural Systems, 2014, p. 20. DOI: https://doi.org/10.1155/2014/230382.

Information about the authors

Sergey O. Ivanov – Senior Lecturer, Math and Hardware Information Systems Department, Chuvash State University, Russia, Cheboksary (v101-11@mail.ru; ORCID: https://orcid.org/0000-0003-3918-3919).

Maxim V. Nikandrov – Candidate of Technical Sciences, Director, LLC «iGRIDS» ltd., Russia, Cheboksary (nixmak@mail.ru; ORCID: https://orcid.org/0000-0001-6846-3384).

Leonid A. Slavutskii – Doctor of Physical and Mathematical Sciences, Professor of Management and Computer Science in Technical Systems Department, Chuvash State University, Russia, Cheboksary (lenya@slavutskii.ru; ORCID: https://orcid.org/0000-0001-6783-2985).

For citations

Ivanov S.O., Nikandrov M.V., Slavutskii L.A. NEURAL NETWORK MODELING OF RELAY PROTECTION WITH A TIME DELAY. Vestnik Chuvashskogo universiteta, 2022, no. 3, pp. 53–60. DOI: 10.47026/1810-1909-2022-3-53-60 (in Russian).

Download the full article