Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2022, no. 3. Topic of this Issue: Electrical Technology and Power Engineering  /  RECURRENT USE OF A PERCEPTRON FOR SIGNAL STRUCTURAL ANALYSIS

RECURRENT USE OF A PERCEPTRON FOR SIGNAL STRUCTURAL ANALYSIS

DOI: 10.47026/1810-1909-2022-3-5-11

УДК 621.316.91

ББК 31.247

Oleg N. ANDREEV, Leonid A. SLAVUTSKII, Elena V. SLAVUTSKAYA

Key words

artificial neural networks, multilayer perceptron, recurrent use, structural analysis of signals, neuroalgorithm accuracy evaluation

Abstract

The paper is devoted to the use of an artificial neural network (ANN) of direct propagation (multilayer perceptron) for signal processing in electrical engineering and electric power industry. It is proposed to use such simple neural networks instead of ANN with a more complex structure (convolutional, recurrent), but within the framework of a sequential recurrent algorithm. This allows checking and controlling the quality of signal processing at each stage of calculations. The proposed algorithm is tested on the example of structural analysis of a signal with nonlinear distortions in a sliding time window. It is shown that the amplitude, frequency and phase of an industrial frequency signal with a high level of harmonics and an aperiodic component can be isolated with an accuracy of units of percent for a time not exceeding units of milliseconds. To increase the accuracy at each step of the calculations, traditional methods can be used, in addition to the ANN: averaging, median smoothing, etc.

References

  1. Borovikov V.P. Neironnye seti. Metodologiya i tekhnologii sovremennogo analiza dannykh [Neural networks. Methodology and technologies of modern data analysis]. Moscow, Goryachaya liniya-Telekom Publ., 2008, 392 p.
  2. Koshcheev M.I., Lariukhin A.A., Slavutskiy A.L. Ispol’zovaniye adaptivnykh neyroalgoritmov dlya ustoychivykh anomal’nykh rezhimov sistem vtorichnogo oborudovaniya elektroenergetiki [Application of adaptive neuro algorithms for recognition of anomalous behaviour of secondary equipment systems in electric power industry]. Vestnik Chuvashskogo universiteta, 2019, no. 1, pp. 47–58.
  3. Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika [Neural networks. Theory and practice]. Moscow, Goryachaya liniya Telekom Publ., 2001, 382 p.
  4. Slavutskaya E.V., Slavutskiy L.A. O vybore struktury iskusstvennykh neyrosetey i algoritmov analiza psikhodiagnosticheskikh dannykh [On choosing the artificial neural networks structure and the algorithms for psycho diagnostic data analyzing]. Kazanskii pedagogicheskii zhurnal, 2020, no. 5 (142), рp.202-210. DOI: 34772/KPJ.2020.142.5.026.
  5. Haykin S. Neural networks, a comprehensive founda-tion. 2nd Upper Saddle River, NJ, Prentice Hall, Inc., 1999 (Russ. ed.: Neironnii seti: polniy: 2nd ed. Moscow, Villiams Publ., 2006, 1104 p.).
  6. Andreev O.N., Slavutskiy A.L., Slavutskii L.A. Neural network in a sliding window for power grids signals structural analysis. IOP Conference Series: Earth and Environmental Science. 990 https://iopscience.iop.org/article/10.1088/1755-1315/990/1/012054
  7. Antonov V.I., Naumov V.A., Fomin A.I. et al. Adaptive structural analysis of input signals of digital and relay protection and automation. Russian Electrical Engineering, 2015, vol. 86, 391–397. DOI: 10.3103/S1068371215070032
  8. Basodi, Zhang H., Pan Y. Gradient amplification: An efficient way to train deep neural networks. Big Data Mining and Analytics, 2020, vol. 3(3), pp.196-207.
  9. Billings S.A. Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. John Wiley & Sons, 2013. 555 DOI: 10.1002/9781118535561.
  10. Bhattacharya B., Sinha А. Intelligent Fault Analysis in Electrical Power Grids. IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). Boston: IEEE, 2017, pp. 985–990. DOI: 10.1109/ICTAI.2017.00151.
  11. Bychkov A., Slavutskii L., Slavutskaya E. Neural Network for Pulsed Ultrasonic Vibration Control of Electrical Equipment. 2020 International Ural Conference on Electrical Power Engineering, UralCon 2020, pp. 24–28. DOI: 10.1109/UralCon49858.2020.9216248
  12. Burton B., Harley R.G. Reducing the computational demands of continually online-trained artificial neural networks for system identification and control of fast processes. IEEE Transactions on Industry Applications, 1998, vol. 34(3), pp. 589–596.
  13. Dharmendra K., Moushmi K., Zadgaonkar A.S. Analysis of generated harmonics due to transformer load on power system using artificial neural network. International journal of electrical engineering, 2013, vol. 4(1), pp. 81–90.
  14. Grossberg S. A Path Toward Explainable AI and Autonomous Adaptive Intelligence: Deep Learning, Adaptive Resonance, and Models of Perception, Emotion, and Action. Neurorobot, 2020, June 25. DOI: https://doi.org/10.3389/fnbot.2020.00036.
  15. Ince T., Kiranyaz S., Eren L., Askar M., Gabbou M. Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks. IEEE Transactions on Industrial Electronics, 2016, vol. 63, no. 11, pp. 7067–7075. DOI: 10.1109/TIE.2016.2582729.
  16. Mazumdar J., Harley R.G., Lambert F., Venayagamoorthy Neural Network Based Method for Predicting Nonlinear Load Harmonics. Power Electronics, IEEE Transactions, 2007, vol. 22(3), pp. 1036–1045. DOI: 10.1109/TPEL.2007.897109.
  17. Montgomery D.C. Design and Analysis of Experiments. John Wiley & Sons. Inc., 1997, 757 p.
  18. Osowski S. Neural network for estimation of harmonic components in a power system. IEEЕ Proceedings on Generation, Transmission and Distribution, 1992, vol. 139(2), pp. 129–135.
  19. Samarasinghe S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. 1st Boca Raton, Auerbach Publications, 2006, 570 p.

Information about the authors

Oleg N. Andreev – Post-Graduate Student, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (helga013@yandex.ru; ORCID: https://orcid.org/0000-0003-2974-2502).

Leonid A. Slavutskii – Doctor of Physical and Mathematical Sciences, Professor, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (lenya@slavutskii.ru; https://orcid.org/0000-0001-6783-2985).

Elena V. Slavutskaya – Doctor of Psychological Sciences, Professor of the Department of Psychology and Social Pedagogy, I. Ya. Yakovlev Chuvash State Pedagogical University, Russia, Cheboksary (slavutskayaev@gmail.com; https://orcid.org/0000-0002-3759-6288).

For citations

Andreev O.N., Slavutskii L.A., Slavutskaya E.V. RECURRENT USE OF A PERCEPTRON FOR SIGNAL STRUCTURAL ANALYSIS. Vestnik Chuvashskogo universiteta, 2022, no. 3, pp. 5–11. DOI: 10.47026/1810-1909-2022-3-5-11 (in Russian).

Download the full article