Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2024, no. 2. Topic of this Issue: Technical Sciences  /  COMPARISON OF INDUCTION MOTOR PARAMETERS ESTIMATION METHODS

COMPARISON OF INDUCTION MOTOR PARAMETERS ESTIMATION METHODS

DOI: 10.47026/1810-1909-2024-2-151-159

УДК 004.942, 621.313.333.2

ББК 31.26

Georgii A. TOLMACHEV, Valerii G. MAKAROV, Igor G. TSVENGER, Aureliya V. TOLMACHEVA

Key words

computer simulation, induction motor, parameters of induction motor equivalent circuit, digital twin, performance characteristics

Abstract

It is known that induction motors are mostly applied type of motors in industry. Therefore, their digital twin development remains relevant. One of the main issues during digital twin development is induction motor parameters determination. There are a number of methods to determine these parameters with varying degree of accuracy.

The purpose of the study is to find an induction motor parameters estimation method which allows one to create a digital twin of actual induction motor.

Methods. MATLAB software was used to create induction motor simulation model in phase coordinates. To determine induction motor parameters via catalogue data, the methods suggested by the following authors were used: Kravchik A.E. (1982), Moshchinskii Yu.A. (1998), Myasovskii V.A. (2020). The object of research is the induction motor AIRM80A6U3 whose actual performance characteristics were obtained during experiment.

Results. Using the developed mathematical model, and methods to determine the parameters of the induction motor via catalogue data, simulation has been applied to compare actual performance characteristics and those obtained as a result of simulation. To improve results accuracy, a series of experiments was performed for stator winding phase resistance identification. The most accurate method was chosen and obtained data were included in it. The paper contains graphical images for visual comparison of simulated and actual induction motor performance characteristics. Maximum relative and integrated errors are the convergence criteria of the model and real motor. These errors are tabulated for visual reference. By analyzing simulated induction motor performance characteristics, current, speed and maximum relative and integrated errors, a method was determined which identifies induction motor parameters with highest accuracy. Moreover, using that method with precise resistances of the stator winding makes it possible to reduce the speed integral and relative error by 2.5 times.

Conclusions. A comparison of the results shows good convergence, which allows the method to be used for modeling induction motor drive systems.

References

  1. German-Galkin C.G., Kardonov K.A. Elektricheskie mashiny. Laboratornye raboty na PK [Electric machines. Laboratory classes on PC]. St. Petersburg, KORONA print Publ., 2003, 256 p.
  2. Zhezhelenko, I.B., Krivonosov V.E., Vasilenko S.V. Kriterii vyyavleniya mezhvitkovykh zamykanii v statornykh obmotkakh s ispol’zovaniem vektornogo analiza faznykh tokov elektrodvigatelya [Сriteria for detecting turn-to-turn short circuit in stator windings using vector analysis of electric motor phase currents]. Izvestiya vysshikh uchebnykh zavedenii i energeticheskikh ob”edinenii SNG, 2021, vol. 64, no. 3, pp. 202–218. DOI: 10.21122/1029-7448-2021-64-3-202-218.
  3. Kravchik A.E., Shlaf M.M., Afonin V.I., Sobolenskaya E.A. Asinkhronnye dvigateli serii 4A, spravochnik [Induction motors of 4A series, reference guide]. Moscow, Energoatomizdat Publ., 1982, 504 p.
  4. Krivykh Yu.S. Nerazrushayushchii kontrol’ i diagnostika asinkhronnogo dvigatelya [Induction motor non-destructive control and diagnostics]. Vestnik Yugorskogo gosudarstvennogo universiteta, 2015, no. S2(37), pp. 197–
  5. Makarov V.G. Asinkhronnyi elektroprivod s optimal’nymi rezhimami raboty [Asynchronous drive with optimal operation modes]. Kazan, 2010, 300 p.
  6. Moshchinskii Yu.A., Bespalov V.Ya., Kiryakin A.A. Opredelenie parametrov skhemy zameshcheniya asinkhronnoi mashiny po katalozhnym dannym [Determination of induction machine equivalent circuit parameters as per catalogue data]. Elektrichestvo, 1998, no. 4, pp. 38–
  7. Myasovskii V.A. Issledovanie metodov rascheta parametrov skhemy zameshcheniya asinkhronnogo dvigatelya po dannym kataloga proizvoditelya [Research of calculation methods of induction motor equivalent circuit parameters as per manufacturer catalogue data]. Molodoi uchenyi, 2020, no. 20(310), pp. 127–
  8. Tytiuk V.K., Baranovskaya M.L., Chorny O.P. Onlajn-identifikacija jelektromagnitnyh parametrov asinhronnogo dvigatelja [Online-Identification of Electromagnetic Parameters of an Induction Motor]. Izvestiya vysshikh uchebnykh zavedenii i energeticheskikh ob”edinenii SNG, 2020, vol. 63, no. 5, pp. 423–440. DOI: 10.21122/1029-7448-2020-63-5-423-440.
  9. Khal’yasmaa A.I., Revenkov I.S., Sidorova A.V. Primenenie tekhnologii tsifrovogo dvoinika dlya analiza i prognozirovaniya sostoyaniya transformatornogo oborudovaniya [Application of digital twin technology for analysis and prediction state of power transformer equipment]. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta, 2022, vol. 14, no. 3(55), pp. 99–
  10. Fei Tao, Fangyuan Sui, Ang Liu et al. Digital twin-driven product design framework. International Journal of Production Research, 2019, vol. 57, no. 12, pp. 3935–3953. DOI: 10.1080/00207543.2018.1443229.

Information about the authors

Georgii A. Tolmachev – Post-Graduate Student, Department of Electrical Drive and Electrical Engineering, Kazan National Research Technological University, Russia, Kazan (gorgik1996@yandex.ru; ORCID: https://orcid.org/0009-0007-2766-6450).

Valerii G. Makarov – Doctor of Technical Sciences, Associate Professor, Head of Department of Electrical drive and Electrical Engineering, Kazan National Research Technological University, Russia, Kazan (electroprivod@list.ru).

Igor G. Tsvenger – Candidate of Technical Sciences, Associate Professor, Department of Electrical drive and Electrical Engineering, Kazan National Research Technological University, Russia, Kazan (it-online@yandex.ru; ORCID: https://orcid.org/0009-0000-1362-9818).

Aureliya V. Tolmacheva – Assistant Lecturer, Department of Electrical drive and Electrical Engineering, Kazan National Research Technological University, Russia, Kazan (aurikatolmach@yandex.ru; ORCID: https://orcid.org/0009-0005-2536-0744).

For citations

Tolmachev G.A., Makarov V.G., Tsvenger I.G., Tolmacheva A.V. COMPARISON OF INDUCTION MOTOR PARAMETERS ESTIMATION METHODS. Vestnik Chuvashskogo universiteta, 2024, no. 2, pp. 151–159. DOI: 10.47026/1810-1909-2024-2-151-159 (in Russian).

Download the full article