Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2024, no. 2. Topic of this Issue: Technical Sciences  /  METHOD FOR IMPLEMENTING SENSORLESS FEEDBACK FOR INTERNAL DRIVE CONTROL LOOP USING KALMAN FILTERING ALGORITHM

METHOD FOR IMPLEMENTING SENSORLESS FEEDBACK FOR INTERNAL DRIVE CONTROL LOOP USING KALMAN FILTERING ALGORITHM

DOI: 10.47026/1810-1909-2024-2-75-91

УДК 681.518.22

ББК 31.261.5

Grigoriy V. MALININ, Andrey I. EKANTYEV

Key words

drive unit, mathematical model, fault-tolerant control, assessment of regulation parameters, discrete Kalman filter, Simulink model, sensorless regulation, DC motor

Abstract

The paper discusses the implementation of a three-circuit control system for the angular position of the drive output shaft. An armature current sensor, an angular velocity sensor of the DC motor output shaft, and an angular position sensor of the drive output shaft are used as feedback sensors. As a rule, the introduction of all of these sensors into a product that has already been put into operation cannot be carried out, in addition, one or another sensor of the internal drive control loop may fail. The three-circuit control system, in turn, has significant advantages when controlling the angular position of the drive output shaft in relation to the single-circuit control system. The paper shows that three-loop control can be implemented even in the absence of feedback sensors in the internal control loops: instead of measuring the controlled variables, in this case they are evaluated.

The purpose of the study is construction of a three-loop control system in the absence of sensors of internal control loops using the assessment of controlled variables by a discrete Kalman filtering algorithm.

Materials and methods. To implement the proposed algorithm, a mathematical model of the drive has been developed, taking into account each control loop and all controller parameters. Modeling of a system with feedback sensors or evaluation of variables of internal control loops is carried out in the MATLAB Simulink software environment.

Research results. Simulation shows that three-loop control of the angular position of the drive output shaft with one physical feedback sensor of the external control loop can be achieved by estimating the variables of the internal control loops of the drive with a discrete Kalman filter. In this case, an increase in the overshoot of the angular position is observed compared to the option of constructing a system with sensors in feedback circuits. To reduce overshoot in the drive transfer function, the damping coefficient is increased and its most optimal value is selected. The quality of regulation in the resulting system does not deteriorate.

Conclusions. The implementation of sensorless feedback is possible, but it requires additional computational costs, which makes the computer more expensive. Also, inaccurate correspondence of estimates of control variables of internal loops to their actual value leads to the need to correct the calculated parameters of the regulator of the external control loop of the drive.

References

  1. Babich O.A. Obrabotka informatsii v navigatsionnykh kompleksakh [Information processing in navigation systems]. Moscow, Mashinostroenie Publ., 1991, 512 p.
  2. Bezdenezhnykh D.V. Razrabotka i issledovanie elektroprivoda na baze mashiny dvoinogo pitaniya s podklyucheniem obmotok statora i rotora k preobrazovatelyam chastoty: avtoref. dis. … kand. tekhn. nauk [Development and research of an electric drive based on a dual-power machine with connection of the stator and rotor windings to frequency converters. Abstract of Cand. Diss.]. Lipeck, 2011, 18 p.
  3. Belonogov O.B., Ronzhin I.V. Matematicheskaya model’ elektrodvigatelya postoyannogo toka rulevoi mashiny zhidkostnogo raketnogo dvigatelya. [Mathematical model of a DC electric motor for the steering gear of a liquid-propellant rocket engine]. Kosmicheskaya tekhnika i tekhnologii, 2021, no. 4(35), pp. 93–99.
  4. Borisov S.V., Rodionov G.V. Realizatsiya trekhkonturnoi tsifrovoi sistemy upravleniya DPT na baze programmnoi sredy MexBIOS [Implementation of a three-circuit digital DC motor control system based on the MexBIOS software environment]. In: Energetika, elektromekhanika i energoeffektivnye tekhnologii glazami molodezhi: materialy Vtoroi rossiiskoi molodezhnoi nauchnoi shkoly-konferentsii [Proc. of Second Russian Youth Scientific School-Conference «Energy, electromechanics and energy-efficient technologies through the eyes of youth»]. Tomsk, 2014, pp. 102–105.
  5. Voekov V.N., Meshcheryakov V.N., Kryukov O.V. Ventil’nyi elektroprivod dlya pogruzhnykh neftyanykh nasosov s impul’snym povyshayushchim preobrazovatelem napryazheniya v zvene postoyan-nogo toka preobrazovatelya chastoty i releinym upravleniem invertorom napryazheniya. [Valve electric drive for submersible oil pumps with a pulse boost voltage converter in the DC link of the frequency converter and relay control of the voltage inverter]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Ser. Energetika, 2020, vol. 20, no. 2, pp. 110–119.
  6. Dobrobaba Yu.P., Koshkin G.A., Makhova V.A. Trekhkonturnaya sistema avtomaticheskogo regulirovaniya polozheniya ispolnitel’nogo organa elektroprivoda postoyannogo toka s zavisyashchim ot skorosti momentom soprotivleniya. [Three-circuit system for automatic control of the position of the executive body of a DC electric drive with a speed-dependent moment of resistance]. Elektronnyi setevoi poli-tematicheskii zhurnal «Nauchnye trudy KubGTU», 2016, no. 2. Available at: https://ntk.kubstu.ru/data/mc/0022/0804.pdf.
  7. Dobrobaba Yu.P., Makhova V.A., Mironyuk S.G. Trekhkonturnaya sistema avtomaticheskogo regulirovaniya polozheniya ispolnitel’nogo organa elektroprivoda postoyannogo toka. [Three-circuit system for automatic regulation of the position of the executive body of a DC electric drive]. Elektronnyi setevoi poli-tematicheskii zhurnal «Nauchnye trudy KubGTU», 2015, no. 5. Available at: https://ntk.kubstu.ru/data/mc/0012/0420.pdf.
  8. Kozachenko V.F. Osnovnye tendentsii razvitiya vstroennykh sistem upravleniya dvigate-lyami i trebovaniya k mikrokontrolleram. [Main trends in the development of embedded motor control systems and requirements for microcontrollers]. Available at: www.chipnews.ru/html.cgi/arhiv/99_01/stat_2.htm (Accessed Date: 2023, Dec. 22).
  9. Kuzovkin V.A., Filatov V.V., Chumaeva M.V. Modelirovanie beskontaktnogo elektro-dvigatelya postoyannogo toka v srede MULTISIM [Simulation of a contactless DC motor in the MULTISIM environment]. Vestnik MGTU «Stankin», 2012, no. 1, pp. 88–93.
  10. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh sistem. [Basics of constructing strapdown inertial navigation systems]. St. Petersburg, 2009, 280 p.
  11. Mikhailov O.P. Avtomatizirovannyi elektroprivod stankov i promyshlennykh robotov [Automated electric drive of machine tools and industrial robots]. Moscow, Mashinostroenie Publ., 1990, 304 p.
  12. Popov V.G., Razin’kov S.N., Reshetnyak E.A. Otsenka effektivnosti trassovogo soprovozhdeniya manevriruyushchikh vozdushnykh istochnikov radioizluchenii [Evaluation of the effectiveness of route tracking of maneuvering air sources of radio emissions]. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2019, no. 9, pp. 90–95.
  13. Potepalova A.Yu., Zaitseva N.V. Modelirovanie raboty algoritma Kalmanovskoi fil’tratsii. [Simulation of the Kalman filtering algorithm]. Sciences of Europe, 2021, no. 70-1, pp. 35–42.
  14. Semenov A.S., Khubieva V.M., Petrova M.N. Matematicheskoe modelirovanie rezhimov raboty dvigatelya postoyannogo toka v srede MATLAB. [Mathematical modeling of operating modes of a DC motor in the MATLAB environment]. Fundamental’nye issledovaniya, 2015, no. 10-3, pp. 523–528.
  15. Shishov D.M. Tranzistornyi regulyator bezdatchikovogo beskollektornogo dvigatelya postoyannogo toka na baze vychislitelya potokostseplenii: dis. … kand. tekhn. nauk. [Transistor regulator of a sensorless brushless DC motor based on a flux linkage computer: Cand. Diss.]. Moscow, 2014, 149 p.

Information about the authors

Grigoriy V. Malinin – Candidate of Technical Sciences, Head of the Industrial Electronics Department, Chuvash State University, Russia, Cheboksary (malgrig6@mail.ru; ORCID: https://orcid.org/0000-0003-3993-0435).

Andrey I. Ekantyev – Post-Graduate Student of Industrial Electronics Department, Chuvash State University, Russia, Cheboksary (andrey‑yekantyev@yandex.ru; ORCID: https://orcid.org/0009-0004-8947-6319).

For citations

Malinin G.V., Ekantyev A.I. METHOD FOR IMPLEMENTING SENSORLESS FEEDBACK FOR INTERNAL DRIVE CONTROL LOOP USING KALMAN FILTERING ALGORITHM. Vestnik Chuvashskogo universiteta, 2024, no. 2, pp. 75–91. DOI: 10.47026/1810-1909-2024-2-75-91 (in Russian).

Download the full article