Главная  /  Наука и инновации  /  Вестник Чувашского университета  /  Metadata for the articles  /  Vestnik Chuvashskogo universiteta, 2024, no. 4. Topic of this Issue: Technical Sciences  /  EXPERIMENTAL STUDY OF OPTIMAL POWER CONSUMPTION CONTROL DEVICE FOR THE ELECTROMAGNETIC DRIVE OF A CONTACTOR

EXPERIMENTAL STUDY OF OPTIMAL POWER CONSUMPTION CONTROL DEVICE FOR THE ELECTROMAGNETIC DRIVE OF A CONTACTOR

DOI: 10.47026/1810-1909-2024-4-98-106

УДК 621.316.53

ББК 31.264

Viktor N. PETROV, Dmitrii N. NIKOLAEV, Dimitrii N. NIKITIN

Key words: electromagnetic drive, control circuit, control device, contactor with electromagnetic drive, vacuum contactor, pulse-width modulation, microcontroller, control algorithm, control device prototype, winding voltage oscillogram, response time, response current, holding current, power consumption reduction, contact vibration.

One of the priority scientific and technological directions of development of the Russian Federation in the field of energy, is energy and resource saving. In this regard, to ensure the competitiveness of the electrical products market, the issue of research and development of low-voltage electromagnetic switching equipment with low values ​​of power consumption and weight and size indicators is relevant.

The purpose of the study is to reduce the power consumption of the electromagnetic drive of the contactor in the holding mode and to increase the electrical wear resistance of the main contacts of the contactor.

Materials and methods. The basis of the study was the analyzed existing solutions for the schemes and algorithms for controlling the electromagnetic drive in various sources of information. The electromagnetic drive of the vacuum contactor of the КВ1-160 series was adopted as the initial object of the study. Main parameters of the electromagnetic drive of the contactor КВ1-160: nominal control voltage of 220 V DC, winding resistance values ​​preliminarily measured by the universal voltmeter АВМ-4306 and the testing device РЕТОМ-21 are 62 Ohm, the power consumption of the contactor electromagnet with a standard unit in the holding mode is 15.2 W. The research used the methods of analysis and synthesis, measurement, planning and conducting an experiment.

Research results. The paper presents the results of the development and study of a control device for electromagnetic drives, which ensures a decrease in the power consumption of the electromagnetic drive in the holding mode, as well as an increase in their electrical wear resistance. A control circuit for a single-winding electromagnetic drive is proposed. A brief description of the operation of the control device prototype based on a microcontroller is given. Experimental studies of the control device prototype are carried out using a three-stage electromagnetic drive control algorithm.

Conclusions. The results of the experimental studies showed the operability of the prototype sample of the contactor electromagnetic drive control device according to the proposed circuit. A reduction in the power consumption of the EMF in the holding mode was achieved, which amounted to 25 W. A slight (approximately 10%) reduction in the vibration time of the main contacts was ensured, which will lead to an increase in their electrical wear resistance.

References

  1. Datchik toka ACS712. Tekhnicheskaya spetsifikatsiya [Current sensor ACS712. Datasheet]. Available at: https://static.chipdip.ru/lib/837/DOC011837270.pdf (Accessed Date: 2024, June 3).
  2. Kontaktor vakuumnyi КВ1. Rukovodstvo po ekspluatatsii [Vacuum contactor KВ1. Operation manual]. Available at: https://www.cheaz.ru/products/lve/contactors/vacuum/kv-1.html (Accessed Date: 2024, June 3).
  3. Konchenkov V.I., Skakunov V.N. Semeistvo mikrokontrollerov STM32. Programmirovanie i primenenie: uchebnoe posobie [STM32 Microcontroller Family. Programming and Application: Study guide]. Volgograd, Volgograd State Technical University Publ., 2015, 78 p.
  4. Mikrokontroller STM32F411CE6. Tekhnicheskaya spetsifikatsiya [Microcontroller STM32F411CE6. Datasheet]. Available at: https://www.st.com/en/microcontrollersmicroprocessors/ stm32f411ce.html (Accessed Date: 2024, June 3).
  5. Zavarykin B.S., Kuz’min R.S., Men’shikov V.A., Gerasimov A.I. Osnovy teorii elektricheskikh apparatov dlya elektromekhanicheskikh sistem gornykh predpriyatii [Fundamentals of the theory of electrical apparatus for electromechanical systems of mining enterprises]. Krasnoyarsk, Siberian Federal University Publ., 2014, 116 p.
  6. Matveev M.N., Arzamasov V.L., Sergeev A.G. Ustroistvo forsirovannogo upravleniya elektromagnitom postoyannogo toka [Forced control device for direct current electromagnet]. Patent RF, no. 2310938, 2007.
  7. Il’in V.F., Matveev N.V., Danilov N.V. Ustroistvo upravleniya elektromagnitom [Electromagnet control device]. Patent RF, no. 2349978, 2008.
  8. Gavrilov A.Yu., Zaitsev M.Yu., Petrov V.N., Svintsov G.P. Ustroistvo upravleniya elektromagnitom postoyannogo napryazheniya [DC Electromagnet Control Device]. Patent RF, no. 2636052, 2017.
  9. Ryumik S.M. 1000 i odna mikrokontrollernaya skhema [1000 and one microcontroller circuit]. Moscow, DMK-Press Publ., 2016, iss. 3, 356 p.
  10. Ryumik S.M. 1000 i odna mikrokontrollernaya skhema [1000 and one microcontroller circuit]. Moscow, Dodeka-XXI Publ., 2010, iss. 1, 360 p.
  11. Ryumik S.M. 1000 i odna mikrokontrollernaya skhema [1000 and one microcontroller circuit]. Moscow, Dodeka-XXI Publ., 2011, iss. 2, 400 p.
  12. Gavrilov A.Yu., Zaitsev Yu.M., Ivanov I.P. et al. Sposob upravleniya elektromagnitnymi privodami kontaktorov [Method of control of electromagnetic contactor drives]. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika, 2015, no. 4, pp. 32−36.
  13. Zaitsev N.Yu., Zaitsev Yu.M., Ivanova S.P. et al. Ustroistvo upravleniya polyarizovannym elektromagnitom [Polarized Electromagnet Control Device]. Elektrotekhnika, 2023, no. 8, pp. 17−19.
  14. Svintsov G.P., Ivanova S.P., Mikhailov A.V. et al. Elektronnyi blok upravleniya dvukhobmotochnoi elektromagnitnoi sistemoi kontaktora [Electronic control unit for a two-winding electromagnetic contactor system]. Elektrooborudovanie: ekspluatatsiya i remont, 2020, no. 9, pp. 26–31.
  15. Chen W., Tang L. Closed-Loop Control System of a Contactor Based on Single-Board RIO. In: The proceedings of the 16th Annual Conf. of China Electrotechnical Society, LNEE, 2022, vol. 889, pp. 177–186. DOI: 10.1007/978-981-19-1528-4_18.
  16. Chi C.T. A Study of Closing Adaptive Control in Electronically Controlled Intelligent Contactor. In: IEEE Region 10 Conf., 2006. DOI: 10.1109/tencon.2006.34399.
  17. De Moraes P.M. d. S.D., Perin A.J. An Electronic Control Unit for Reducing Contact Bounce in Electromagnetic Contactors. IEEE Transactions on Industrial Electronics, 2008, vol. 55, iss. 2, pp. 861–870. DOI: 10.1109/TIE.2007.909073.
  18. Fang S., Chen Y., Yang Y. Optimization design and energy-saving control strategy of high power dc contactor Electrical Power and Energy Systems, 2020, vol. 117. DOI: https://doi.org/10.1016/j.ijepes.2019.105633.
  19. Liu Y.-Y., Chen D., Ji L., Geng Y. Dynamic characteristic and contact bounce analysis for an AC contactor with PWM controlled coil. In: Electrical Contacts-2 Proc. of the 53rd IEEE Holm Conference on Electrical Contacts, 2007, pp. 289–293. DOI: 1109/holm.2007.4318232.
  20. Liu Y.-Y., Chen D., Niu C.-P., Ji L. Analysis and simulation of dynamic behavior and contact bounce for an intelligent contactor with feelback mechanism. In: Proc. of the CSEE, 2007, vol. 27(30), pp. 20–25.
  21. Longfei T., Zhiping Han, Zhihong X. Neural Network-Based Co-Simulation Technology for Intelligent Contactors. IEEE Transactions on Magnetics, 2020, vol. 56, iss. 2. DOI: 10.1109/TMAG.2019.2948318.
  22. Park T.-H., Kim R.-Y., Lim S.-K. Two-level excitation current driver to reduce the driving power of an electromagnetic contactor. Electronics, 2024, vol. 13(5), 916. DOI: 10.3390/electronics13050916.
  23. Rakhunde Prashant A., Singh J. K. Intelligent Contactor Coil Drive Design For Soft Switching Of Load With Power Saving. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2017, vol. 5, iss. VI, pp. 1946–1951.
  24. Sun S., Cui J., Du T. Research on the Influence of Vibrations on the Dynamic Characteristics of AC Contactors Based on Energy Analysis. Energies, 2020, no. 13(3), 559. DOI: 10.3390/en13030559.
  25. Tomczuk B., Waindok A., Wajnert D. Transients in the electromagnetic actuator with the controlled supplier. Journal of Vibroengineering, 2012, vol. 14, iss. 1, pp. 39–44.

Information about the authors

Viktor N. Petrov – Candidate of Technical Sciences, Associate Professor, Department of Electrical and Electronic Devices, Chuvash State University, Russia, Cheboksary (pvn.chuvsu@yandex.ru; ORCID: https://orcid.org/0000-0003-2790-6390).

Dmitrii N. Nikolaev – Setup and Service Engineer of 3rd Categories, EKRA Ltd, Russia, Cheboksary (dimannikolaev11.2000@gmail.com).

Dimitrii N. Nikitin – Software Engineer, Department of Relay Protection and Automation Systems, EKRA Ltd, Russia, Cheboksary (nikitin_97_97@mail.ru).

For citations

Petrov V.N., Nikolaev D.N., Nikitin D.N. EXPERIMENTAL STUDY OF OPTIMAL POWER CONSUMPTION CONTROL DEVICE FOR THE ELECTROMAGNETIC DRIVE OF A CONTACTOR. Vestnik Chuvashskogo universiteta, 2024, no. 4, pp. 98–106. DOI: 10.47026/1810-1909-2024-4-98-106 (in Russian).

Download the full article