Maksim I. Koshcheev, Alexandr L. Slavutskiy, Leonid A. Slavutskii
DOI: 10.47026/1810-1909-2020-3-84-93
Key words
neural networks, power system, emergency modes, parameters of transient processes, measuring elements of secondary equipment.
Annotation
The use of elemental perceptron as the simplest artificial feedforward neural network is proposed to evaluate transient processes in electrical networks. Signals with random amplitude, phase, frequency and attenuation were used to test the neural network algorithm as well as the superposition of an aperiodic component, also having a random amplitude and a time-constant. Each signal from the sample was thus determined by six independent random parameters, varying in different ranges. Based on the results of numerical modeling it is shown that such signals are typical for oscillograms of current at short circuits on power lines. It is shown that at the frequency of digitization of signals of 600 Hz in measuring organs on the time interval during industrial frequency it is possible to assess the parameters of a transition process with the accuracy not lower than several percents. The accuracy of the definition for each parameter depending on the range of their variation is analyzed. Transition process parameters that have the greatest impact on neural network training and testing errors are highlighted. Estimates of the possible running speed of the proposed neural network algorithm are made.
References
- Shuin V.A., ed.; Arzhannikov E.A., Lukoyanov V.Yu., Misrikhanov M.Sh. Opredelenie mesta korotkogo zamykaniya na vysokovol’tnykh liniyakh elektroperedachi [Detection of short circuit location on high-voltage power lines]. Moscow, Energoatomizdat Publ., 2003, 272 p.
- 2. Bychkov A.V., Nikitin A.A. Algoritm dvukh vyborok. Povysheniye tochnosti vychisleniy v perekhodnykh rezhimakh [Two samples algorithm. Increase calculation accuracy in transient modes] In: Tsifrovaya elektrotekhnika: problemy i dostizheniya: sb. nauch. tr. NPP «EKRA» [Digital electrical engineering: problems and achievements]. Cheboksary, 2013, pp. 32–44.
- Zakon’shek Ya., Slavutskii A.L. Tsifrovoe modelirovanie sovremennykh energosistem v real’nom vremeni [Digital simulation of real-time power systems]. Releinaya zashchita i avtomatizatsiya, 2012, no. 1, pp. 66–72.
- Kozlov V.N., Bychkov Yu.V., Ermakov K.I. O tochnosti sovremennykh ustroistv OMP [About accuracy of modern devices for network damage location]. Releinaya zashchita i avtomatizatsiya, 2016, no. 1, pp. 42–46.
- Koshcheev M.I., Slavutskii A.L., Slavutskii L.A. Prostyye neyrosetevyye algoritmy dlya volnovogo metoda opredeleniya mesta povrezhdeniya elektroseti. [Simple neural network algorithms for the wave method of fault location in power networks]. Vestnik Chuvashskogo universiteta, 2019, no. 3, pp. 110–118.
- Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika [Neural networks. Theory and practice]. Moscow, Goryachaya liniya Telekom Publ., 2001, 382 p.
- Kulikov A.L., Petrukhin A.A., Kudryavtsev D.M. Diagnosticheskii kompleks po issledovaniyu linii elektroperedach [Diagnostic complex for the study of power lines]. Izvestiya vuzov. Problemy energetiki, 2007, no. 7-8, pp. 17–22.
- Lachugin V.F., Panfilov D.I., Smirnov A.N. Realizatsiya volnovogo metoda opredeleniya mesta povrezhdeniya na liniyakh elektroperedachi s ispol’zovaniem statisticheskikh metodov analiza dannykh [Implementation of the wave method of determining the location of damage on power lines using statistical data analysis methods]. Izvestiya RAN. Energetik, 2013, no. 6, pp. 137–146.
- Lyamets Yu.Ya., Belyanin A.A., Voronov P.I. Analiz perekhodnykh protsessov v dlinnoi linii v bazise diskretnogo i nepreryvnogo vremeni [Analysis of transients in a long line in the basis of discrete and continuous time]. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika, 2012, no.4, pp. 11–16.
- Lyamets Yu.Ya., Nudel’man. G.S., Pavlov A.O., Efimov E.B., Zakon’shek Ya. Raspoznavaemost’ povrezhdenii elektroperedachi, ch. 1,2,3 [Detectability of power transmission damage]. Elektrichestvo, 2001, no. 2, pp. 16–23; no. 3, pp. 16–24; no. 12, pp. 9–22.
- Slavutskiy A.L. Primeneniye algoritma Dommelya dlya modelirovaniya tsepi s poluprovodnikovymi elementami i klyuchami s SHIM upravleniyem [Application of dommel algorithm for simulation of semiconductor circuits with pwm control switches].Vestnik Chuvashskogo universiteta, 2014, no. 2, pp. 57–65.
- Antonov V.I., Il’in A.A., Lazareva N.M. Adaptive Structural Models of Digital Electrical Signals with Local Irregularity. Russian Electrical Engineering, 2012, no. 4, pp. 187–189.
- Dommel H.W. Digital Computer Solution of Electromagnetic Transients in Single- and Multiphase Networks. IEEE Transactions on Power Apparatus and Systems, 1969, vol. Pas-88, no. 4, pp. 388–399.
- Elhaffar A.M. Power Transmission Line Fault Location Based on Current Travelling Waves, Doctoral Dissertation. Helsinki University of Technology, Helsinki, 2008.
- Kasztenny B., Guzman A., Mangapathirao V.M., Titiksha J. Locating Faults Before the Breaker Opens-Adaptive Autoreclosing Based on the Location of the Fault. 44th Annual Western Protective Relay Conference, 2017, pp. 1–15.
- Lachugin V.F., Panfilov D.I., Smirnov A.N., Obraztsov S.A., Ryvkin A.A., Shimina A.O. A Multifunctional Device for Recording the Monitoring of Electric Power Quality and for Fault Finding on Electric Transmission Lines. Power technology and engineering, 2014, vol. 47, no. 5, pp. 386–392.
- Lamture J., Vaidya A. P. Development of distance relay in Matlab. International Journal of Advanced Computational Engineering and Networking, 2016, vol. 3(9). Available at: iraj.in/journal/journal_file/journal_pdf/3-181-144125644577-80.pdf.
- Malathi V., Marimuthu N.S. Wavelet Transform and Support Vector Machine Approach for Fault Location in Power Transmission Line. World Academy of Science, Engineering and Technology, 2010, vol. 39.
- Saha M. M, Izykowski J., Rosolowski E. Fault Location in Power Networks. 1st New York, Springer-Verlag, 2010.
- Slavutskaya E.V., Abrukov V.S., Slavutskii L.A. Simple neuro network algorithms for evaluating latent links of younger adolescent’s psychological characteristics. Experimental Psychology, 2019, vol. 12, no. 2, pp. 131–142.
- Soldatov A.V., Naumov V. A., Antonov V.I., Aleksandrova M.I. Information Bases of Algorithms for Protecting a Generator Operating on Busbars from Single-Phase-to-Ground Faults.1 Part III. Investigation of the Information Bases of Algorithms Controlling Higher Current Harmonics. Power Technology and Engineering, 2019, vol. 53(4), pp. 496–502. DOI: 10.1007/s10749-019-01105-w.
- Swagata Das, Surya Santoso, Anish Gaikwad, Mahendra Patel. Impedance-Based Fault Location in Transmission Networks: Theory and Application. IEEE Access, 2009, vol. 2, New York, 2009.
- Wang J., Liu X., Pan Z. A New Fault Location Method for Distribution Network Based on Traveling Wave Theory. Advanced Materials Research, 2015, vols. 1070–1072, pp. 718–725.
- Ziegler G. Numerical Distance Protection: Principles and Applications. SIEMENS, 2011, 419 p. Available at: https://www.wiley.com/en-ru/Numerical+Distance+Protection%3A+ Principles+ and+Applications%2C+4th+Edition-p-9783895786679.
Download the full article