Главная  /  Vestnik Chuvashskogo universiteta, 2023, no. 4. Topic of this Issue: Technical Sciences  /  Analytical calculation of magnetoelectric valve motor and definition of inductive parameters of its windings

Analytical calculation of magnetoelectric valve motor and definition of inductive parameters of its windings

DOI: 10.47026/1810-1909-2023-4-24-34

УДК 621.313.13-047.72-028.45

ББК З291.5:З26-028

Aleksandr A. AFANASYEV, Valery S. GENIN, Lidia N. VASILEVA, Nadezhda N. IVANOVA, Vladimir A. VATKIN, Dmitry A. TOKMAKOV

Key words

scalar magnetic potentials, magnetic induction, magnetic sheets, magnetization, ferromagnetic media, inductive parameters of windings

Abstract

To implement the dynamic properties of the designed valve motors and achieve the proper quality of transient processes in the drives of complex mechanisms, it is necessary to study their electromagnetic and functional characteristics with the calculation of the inductive parameters of the windings.

The purpose of the study is to study the electromagnetic and functional characteristics of the magnetoelectric valve motor and determine the inductive parameters of its windings.

Materials and methods. The magnetic field of the machine is divided into a set of horizontal stripes (mediums), analyzed independently of each other. It is assumed that the magnetic field in these stripes is plane-parallel, and at the boundaries of the selected stripes the conjugation conditions are met: scalar magnetic potentials and normal components of magnetic induction do not undergo a jump (discontinuity). The magnetomotive force of the stator winding, the coercive force of magnets and the magnetization of soft magnetic ferromagnetic media are considered as sources of the magnetic field. Expressions for describing scalar magnetic potentials and normal components of magnetic induction in selected bands are obtained using the Fourier variable separation method.

Research results. A study of the electromagnetic and functional characteristics of the motor was carried out using a mathematical model of the magnetoelectric valve motor based on the Fourier method of separation of variables with the division of the active region into homogeneous sections in the form of magnetic sheets. The model enables to determine magnetic inductions for any coordinate points x, y of the active region of the motor magnetic system. Expressions describing the inductive parameters of the windings are obtained, and the equations of the state of the motor are given for the case when the currents in the phase windings of the stator are in antiphase with their no-load EMF.

Conclusions. Mathematical models of valve motors, built on the basis of the Fourier variable separation method, make it possible to determine the electromagnetic characteristics of motors and the inductive parameters of windings necessary for calculating transient processes. The most effective is valve motor control, when the phase currents are in antiphase with the no-load EMF. In this mode, with the absence of longitudinal current and with a power factor close to unity, the equations of state of the motor are of the second order.

References

  1. Afanasyev A.A., Genin V.S., Vatkin V.A Analiticheskoe i chislennoe modelirovanie magnitoelektricheskikh ventil’nykh dvigatelei [Analytical and Numerical Simulation of Magnetoelectric Valve Motors]. Elektrichestvo, 2021. no. 6, pp. 72–78. DOI: 10.24160/0013-5380-2021-6-72-78.
  2. Afanasiev A.A. Calculating Magnetoelectric Valve Motors by the Fourier Variable Separation Method. Russian Electrical Engineering, 2021, vol. 92, no. 2, pp. 77–83. DOI: 10.3103/S1068371221020024.
  3. Bulatov Yu.N., Kryukov A.V., Suslov K.V. Issledovanie raboty samonastraivayushchegosya prognosticheskogo regulyatora skorosti vrashcheniya rotora sinkhronnogo generatora na kiberfizicheskoi modeli turbogeneratornoi ustanovki [Investigation of the Operation of a Self-Adjusting Predictive Controller of the Rotor Speed of a Synchronous Generator on a Cyber-Physical Model of a Turbogenerator Plant]. Zhurnal Sibirskogo federal’nogo universiteta. Tekhnika i tekhnologii, 2022, vol.15, no. 2, pp. 177–191. DOI: 10.17516/1999-494X-0381.
  4. Vazhnov A.I. Osnovy teorii perekhodnykh protsessov sinkhronnoi mashiny [Fundamentals of Transient Theory of a Synchronous Machine]. Moscow, Gosenergoizdat Publ., 1960, 312 p.
  5. Ivannikov Yu.N., Ovsyannikov V.N. Issledovanie temperaturnogo sostoyaniya momentnogo elektrodvigatelya s ogranichennym uglom povorota rotora [Investigation of Thermal Field of the Limited-Angle Torque Motor]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Tekhnicheskie nauki, 2022, vol. 30, no. 2(74). pp. 60–72. DOI: 10.14498/tech.2022.2.5.
  6. Ismailov A.Yu., Gubasheva Kh.A. Perspektivy zameny redkozemel’nykh elementov: novye razrabotki i ekologicheski chistye al’ternativy [Prospects for Rare Earth Element Substitution: New Developments and Environmentally Friendly Alternatives]. In: Sovremennye nauka i obrazovanie: dostizheniya i perspektivy razvitiya: sb. materialov XXX Mezhdunar. nauch.-prakt. konf. (Moskva, 7 iyunya 2023 g.): v 4 t. [Proc. of 30th Int. Sci. Conf. «Modern Science and Education: Achievements and Development Prospects». 4 vols.]. Moscow, Imperiya Publ., 2023, vol. 4, pp. 24–25.
  7. Korol’ V.I., Lankin M.V., Lankin A.M. Metod opredeleniya magnitnykh kharakteristik vysokokoertsitivnykh postoyannykh magnitov s primeneniem veivlet-preobrazovaniya [Method for Determining the Magnetic Characteristics of High-Coercive Permanent Magnets Using the Wavelet Transform]. Inzhenernyi vestnik Dona, 2021, no. 6(78), pp. 139–150.
  8. Novgorodskie uchenye razrabotali «umnye» elektrodvigateli dlya burovykh ustanovok [Novgorod Scientists Have Developed “Smart” Electric Motors for Drilling Rigs]. Available at: https://news.novgorod.ru/news/novgorodskie-uchnye-razrabotali-umnye-elektrodvigateli-dlya-burovykh-ustanovok–187824.html.
  9. Polivanov K.M. Teoreticheskie osnovy elektrotekhniki. T. 3. Teoriya elektromagnitnogo polya [Theoretical Foundations of Electrical Engineering. Vol. 3: Electromagnetic Field Theory]. Moscow, Energiya Publ., 1969, 352 p.
  10. Polivanov K.M. Ferromagnetiki [Ferromagnets]. Moscow, Gosenergoizdat Publ., 1957, 256 p.
  11. Polyanin A.D. Spravochnik po lineinym uravneniyam matematicheskoi fiziki [Handbook of Linear Equations of Mathematical Physics]. Moscow, Fizmatlit Publ., 2001, 576 p.
  12. Akimov I.I., Buryakov I.N., Kichko S.A. et al. Problemy primeneniya redkozemel’nykh postoyannykh magnitov v ekstremal’nykh usloviyakh ekspluatatsii [Problems of Using Rare-Earth Permanent Magnets in Extreme Operating Conditions]. Russkii inzhener, 2021, no. 3, pp. 37–39.
  13. Chrobak A. High and ultra-high coercive materials in spring-exchange systems – Review, simulations and perspective. Materials, 2022, vol. 15, no. 19, 6506. DOI: 10.3390/ma15196506.

Information about the authors

Aleksandr A. Afanasyev – Doctor of Technical Sciences, Professor, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (afan39@mail.ru).

Valery S. Genin – Doctor of Technical Sciences, Professor, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (v.s.genin@mail.ru).

Lidia N. Vasileva – Candidate of Pedagogical Sciences, Associate Professor, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (oln2404@mail.ru).

Nadezhda N. Ivanova – Candidate of Technical Sciences, Associate Professor, Department of Mathematical and Hardware Support of Information Systems, Chuvash State University, Russia, Cheboksary (niva_mail@mail.ru; ORCID: https://orcid.org/0000-0001-7130-8588).

Vladimir A. Vatkin – Candidate of Technical Sciences, Chief Designer, Department of Electrical Machines, JSC «ChEAZ», Russia, Cheboksary (vatkinv@yandex.ru).

Dmitry A. Tokmakov – Director for Development, JSC «ChEAZ», Russia, Cheboksary (tokmakov_da@mail.ru).

For citations

Afanasyev A.A., Genin V.S., Vasileva L.N., Ivanova N.N., Vatkin V.A., Tokmakov D.A. ANALYTICAL CALCULATION OF MAGNETOELECTRIC VALVE MOTOR AND DEFINITION INDUCTIVE PARAMETERS OF ITS WINDINGS. Vestnik Chuvashskogo universiteta, 2023, no. 4, pp. 24–34. DOI: 10.47026/1810-1909-2023-4-24-34 (in Russian).

Download the full article