Главная  /  Vestnik Chuvashskogo universiteta, 2023, no. 4. Topic of this Issue: Technical Sciences  /  Complex designing algorithm for spacecraft energy-converting equipment

Complex designing algorithm for spacecraft energy-converting equipment

DOI: 10.47026/1810-1909-2023-4-85-98

УДК 621.31

ББК 32.859

Ivan M. ZHURAVLEV, Ilya E. LYSENKO, Mikhail E. KHLYSTUNOV, Denis O. DUDARKOV, Andrey G. STRUGOVETS

Key words

energy-converting equipment, spacecraft, electric power converters, reliability, efficiency, relative power coefficient

Abstract

Introduction. The complication of the spacecraft payload requires the use of non-standard circuits. The analysis of scientific and technical publications shows that there is no formalized methodology for spacecraft energy-converting equipment designing. Reviewed publications consider some design algorithms taking into account one (efficiency) or two criteria (efficiency, weight and size characteristics). At the same time, the issues of ensuring trouble-free operation of energy-converting equipment are not sufficiently considered which leads to rejection of most part of proposed circuitsolutions and reduces developer efficiency.

The research purpose is to form a spacecraft energy–converting equipment designing algorithm, taking into account the reliability, efficiency and relative power coefficient requirements.

Materials and methods. The main provisions of the electrical circuit theory and the theory of technical systems reliability were used. All calculations were carried out in Mathcad 15.0.

Research results. The article step-by-step discusses the design process using the example of boost and buck voltage converters. It is shown that taking into account the reliability requirements leads to a decrease of weight and size indicators (due to the additional mass of redundant elements) and efficiency (due to power losses on redundant elements). Converters with an AC-current node based on a double active bridge (active front end bridge inverter) and add-voltage circuits are considered. It can be seen that the use of converters with AC-current node in spacecraft energy-converting equipment is complicated because of low reliability or high weight and size meters.

Conclusions. A converter circuit must ensure operation in the event of a single failure of a random power element. At the same time, scheme with a minimum number of power elements have the greatest prospects for application. A converter energy characteristic must be evaluated after ensuring the reliability.

References

  1. Zhuravlev I.M., Asochakov A.S., Druzhinin A.A., Lopatin A.A. Algoritmy upravleniya mnogokanalnym shuntovym stabilizatorom napryazhenija s tsifrovoi sistemoi avtomaticheskogo upravleniya [Control algorithms for multichannel shunt voltage converter with digital control system]. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2021, vol. 24, no 2, pp. 84–90.
  2. Zhuravlev I.M., Hlystunov M.E., Osipov A.V., Lopatin A.A. Vol’todobavochnyi rezonansnyi preobrazovatel’ energii solnechnoi batarei s aktivnym vypryamitelem [Add-voltage topology resonant solar energy converter with an active rectifier]. Reshetnevskie chteniya, 2018, vol. 1, pp. 297–299.
  3. Menshikov V.A., Rudakov V.B., Sychev V.N. Kontrol’ kachestva kosmicheskikh apparatov pri otrabotke i proizvodstve. Optimizatsiya i upravlenie riskami [Spacecraft quality control at during testing and production. Optimization and risk management]. Moscow, Mashinostroenie–Polet Publ., 2009, 400 p.
  4. Kobzev A.V. Mnogozonnaya impul’snaya modulyatsiya. Teoriya i primenenie v sistemakh preobrazovaniya parametrov elektricheskoi energii [Multi-zone pulse modulation. Theory and practice application in systems system of parameters converter]. Novosibirsk, Nauka Publ, 1979, 304 p.
  5. Kobzev A.V., Mihalchenko G.Ya., Muzychenko N.M. Modulyatsionnye istochniki pitanita RYeA [Modulated power supplies converter]. Tomsk, Radio i svyaz Publ., 1990, 336 p.
  6. Patraev V.E., Shangina E.A. Nadezhnost’ tehnicheskikh sistem kosmicheskikh apparatov [Spacecraft technical systems reliability: textbook manual]. Krasnoyarsk, Siberian Federal University Publ, 2019, 66 p.
  7. Proektirovanie nadezhnyh sputnikov svyazi [Reliable communication satellite designing]. Tomsk, Rasko Publ., 1993, 221 p.
  8. Osipov A.V., Shkolnyi V.N., Shinyakov Yu.A., Yaroslavcev E.V., Shemolin I.S. Posledovatel’nyi rezonansnyi preobrazovatel’ dlya sistem elektropitaniya ot akkumulyatorov [Series resonant converter for discharge of batteries space vehicles power systems]. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2017, vol. 20, no 2, pp. 103–110.
  9. Spravochnik normativnogo kharaktera [Handbook of normative estimation]. Moscow, 2006, 641 p.
  10. Saleh J.H., Castet J-F. Spacecraft Reliability and Multi-State Failures: A Statistical Approach: John Wiley & Sons Limited. Inc, 2011. 206 p.

Information about the authors

Ivan M. Zhuravlev – Design Engineer 2th Grade, JSK Academician M.F. Reshetnev Information Satellite System, Russia, Zheleznogorsk (zhuravlevim@iss-reshetnev.ru).

Ilya E. Lysenko – Design Engineer, JSK Academician M.F. Reshetnev Information Satellite System, Russia, Zheleznogorsk (lysenkoie@iss-reshetnev.ru).

Mikhail E. Khlystunov – Design Engineer 3th Grade, JSK Academician M.F. Reshetnev Information Satellite System, Russia, Zheleznogorsk (hlystunovme@iss-reshetnev.ru).

Denis O. Dudarkov – Design Engineer 3th Grade, JSK Academician M.F. Reshetnev Information Satellite System, Russia, Zheleznogorsk (dudarkovdo@iss-reshetnev.ru).

Andrey G. Strugovets – Head of Department, JSK Academician M.F. Reshetnev Information Satellite System, Russia, Zheleznogorsk (strugovetsag@iss-reshetnev.ru).

For citations

Zhuravlev I.M., Lysenko I.E., Khlystunov M.E., Dudarkov D.O., Strugovets A.G. COMPLEX DESIGNING ALGORITHM FOR SPACECRAFT ENERGY-CONVERTING EQUIPMENT. Vestnik Chuvashskogo universiteta, 2023, no. 4, pp. 85–98. DOI: 10.47026/1810-1909-2023-4-85-98 (in Russian).

Download the full article