Главная  /  Vestnik Chuvashskogo universiteta, 2023, no. 4. Topic of this Issue: Technical Sciences  /  Numerical and laboratory simulation of transformer saturation depending on the initial phase of the current

Numerical and laboratory simulation of transformer saturation depending on the initial phase of the current

DOI: 10.47026/1810-1909-2023-4-5-14

УДК 621.314

ББК 31.211

Oleg N. ANDREEV, Lidia N. VASILEVA, Evgeniy K. MATVEEV, Aleksandr L. SLAVUTSKIY

Key words

current transformer saturation, harmonic distortion, current phase, aperiodic component, secondary winding

Abstract

In case of short circuits in electric power systems, emergency modes are possible, accompanied by saturation of transformers. With them, significant distortion of current signals occurs in the secondary winding of the transformer with the appearance of an aperiodic component and harmonics, the level of which is comparable to the signal at the main industrial frequency. The requirements for relay protection and automation devices imply the need to determine the time from the onset of the transient process to the onset of distortion of the current signal in the secondary winding.

The purpose of the study is to analyze the saturation of the transformer depending on the initial phase of the transition process.

Materials and methods. The PSCAD platform was used to model the power system section. The model makes it possible to qualitatively describe the saturation of a step-down transformer in the event of a short circuit on the low side, taking into account hysteresis phenomena in the magnetic system. Experimental verification was carried out in laboratory conditions using a measuring (intermediate) current transformer.

Results. It is shown that, depending on the phase of the current at the moment of the beginning of the transient process, the pattern of saturation and, accordingly, the distortion of the current changes significantly. The distortion of the time waveform of the current signal in the secondary winding of the transformer can begin both after fractions of the period of the power frequency signal, and after several periods.

Conclusions. The assessment of transformer saturation modes should be carried out taking into account the fact that the initial conditions for transient processes during short circuits are random. In the analysis of such processes, it is necessary to take into account the phase shift between current and voltage.

References

  1. Kuzhekov S.L., Degtyarev A.A., Doni N.A. et al. Analiz meropriyatiy, isklyuchayush-chikh neselektivnye deystviya differentsial’nykh zashchit sbornykh shin pri vneshnikh dvukhfaznykh korotkikh zamykaniyakh s nasyshcheniem transformatorov toka, vklyuchennykh v nepovrezhdennuyu fazu [Analysis of measures that exclude non-selective actions of differential protection of busbars in case of external two-phase short circuits with saturation of cur-rent transformers included in the undamaged phase]. Elektricheskie stantsii, 2019, no. 9(1058), pp. 22–29.
  2. Gurevich V. Problema elektromagnitnykh vozdeystviy na mikroprotsessornye ustroystva re-leynoy zashchity. Chast’ 2 [The problem of electromagnetic influences on microprocessor devices of relay protection. Part 2]. Komponenty i tekhnologii, 2010, no. 3(104), pp. 91–96.
  3. Zakon’shek Ya.V., Shamis M.A., Ivanov F.A. Sovremennye programmnoapparatnye kompleksy na baze simulyatora RTDS dlya modelirovaniya po tekhnologii Phil [Modern hardware and software systems based on the RTDS simulator for modeling using Phil technology]. In: Releinaya zashchita i avtomatizatsiya elektroenergeticheskikh sistem Rossii (RELAVEKSPO-2019): sb. dokl. V Mezhdunar. nauch.-prakt. konf. (Cheboksary, 23–26 aprelya 2019 g.). [Proc. of 5th Sci. Conf. «Relay protection and automation of electrical power systems in Russia (RELAVEXPO-2019)»]. Cheboksary, Chuvash State Univesity Publ., 2019, pp. 243–246.
  4. Koshcheev, M.I., Slavutskiy A.L., Slavutskii L.A. Elementarnyy perseptron kak instrument analiza perekhodnykh protsessov [Elementary perceptron as a tool for transient analysis]. Vestnik Chuvashskogo universiteta, 2020, 3, pp. 84–93. DOI: 10.47026/1810-1909-2020-3-84-93.
  5. Kuzhekov S.L., Degtyarev A.A., Vorob’ev V.S., Moskalenko V.V. Opredelenie vremeni do nasyshcheniya transformatorov toka v perekhodnykh rezhimakh korotkikh zamykaniy [Determining the time to saturation of current transformers in transient short circuits]. Elektricheskie stantsii, 2017, no.1(1026), pp. 42–
  6. Kuzhekov S.L., Degtyarev A.A., Serbinovskiy B.B. Obespechenie pravil’ nogo funktsioirovaniya differentsial’nykh zashchit sbornykh shin v usloviyakh nasyshcheniya transformatorov toka [Ensuring the correct functioning of the differential protection of busbars in conditions of saturation of current transformers]. Izvestiya vysshikh uchebnykh zavedeniy. Elektromekhanika, 2017, iss. 60, no. 4, pp. 76– DOI: 10.17213/0136-3360-2017-4-76-84.
  7. Kuzhekov S.L., Nudel’man G.S. Obespechenie pravil’noy raboty mikroprotsessornykh ustroystv differentsial’noy zashchity pri nasyshchenii transformatorov toka [Ensuring the correct operation of microprocessor devices of differential protection in case of saturation of cur-rent transformers]. Elektromekhanika, 2009, no. 4, pp. 12–17.
  8. Lyamets Yu.Ya., Nikonov I.Yu., Petryashin I.E. Vosstanovlenie nelineyno iskazhennogo toka korotkogo zamykaniya po malomu chislu otschetov [Recovery of a non-linearly distorted short-circuit current from a small number of samples]. Elektricheskie stantsii, 2021, no. 1(1074), pp. 31–
  9. Kuzhekov C.L., Degtyarev A.A., Forsyth P. et al. Matematicheskoe modelirovanie transformatorov toka v rezhimakh s glubokim nasyshcheniem magnitoprovodov [Mathematical modeling of current transformers in modes with deep saturation of magnetic cores]. In: Sovremennye napravleniya razvitiya releinoi zashchity i avtomatiki energosistem: materialy 5-i Mezhdunar. nauch.-tekhn. konf. 1-5 iyunya 2015 g.: sb. dokl. mezhdunar. nauch.-tekhn. konf. [Proc. of Int. Sci. Conf. «Modern directions in the development of relay protection and automation of power systems»]. Sochi, 2015, 1 CD-ROM.
  10. Plakidin R.S., Ul’yanov D.N., Popov D.N. et al. Trebovaniya k metrologicheskim kharakteristikam preobrazovateley analogovykh signalov [Requirements for the metrological characteristics of analog signal converters]. Releynaya zashchita i avtomatizatsiya, 2021, no. 1(42), pp. 38-44.
  11. Shamis M.A., Ivanov F.A., Vasil’ev S.P., Zakon’shek Ya. Novye vozmozhnosti po detal’nomu modelirovaniyu perekhodnykh protses-sov v bol’shikh energosistemakh [New opportunities for detailed modeling of transient processes in large power systems]. In: Sovremennye tendentsii razvitiya tsifrovykh sistem releinoi zashchity i avtomatiki: materialy nauch.-tekhn. Konf. molodykh spetsialistov v ramkakh foruma «RELAVEKSPO-2021» [Proc. of Int. Sci. Conf. «Modern trends in the development of digital relay protection and automation systems. RELAVEXPO-2021»]. Cheboksary, Chuvash State Univesity Publ, 2021, pp. 204–
  12. Andreev O.N., Slavutskiy A.L., Slavutskii L.A. Neural network in a sliding window for power grids signals structural analysis. In: IOP Conference Series: Earth and Environmental Science, 2022, 990 012054. DOI 10.1088/1755-1315/990/1/012054.
  13. Dommel H.W. Digital Computer Solution of Electromagnetic Transients in Single- and Multiphase Networks. IEEE Transactions on power apparatus and systems, 1969, vol. PAS-88, no. 4, pp. 388–399.
  14. Hajipour E., Vakilian M., Sanaye-Pasand M. Current transformer saturation compensation for transformer differential re-lays IEEE Trans. Power Deliv, 2015, vol. 30, no. 5, pp. 2293–2302.
  15. Slavutskiy A, Slavutskii L., Slavutskaya E. Neural Network for Real-Time Signal Processing: the Nonlinear Distortions Filtering. In: 2021 International Ural Conference on Electrical Power Engineering (UralCon), 2021, pp. 84–88. DOI: 10.1109/UralCon52005.2021.9559619.
  16. Vorobyev E., Antonov V., Ivanov N. et al. Fundamentals of Multichannelstructural Analysis of Electrical Signals. In: 2021 Ural-Siberian Smart Energy Conference (USSEC), 2021, pp. 30–34. DOI: 10.1109/USSEC53120.2021.9655762.
  17. Zirka S.E., Moroz Y.I., Chiesa N. et al. Implementation of Inverse Hysteresis Model Into EMTP – Part II: Dynamic Model. In: IEEE Transactions on Power Delivery, 2015, vol. 30, no. 5, pp. 2233–2241. DOI: 10.1109/TPWRD.2015.2416199.
  18. Zirka S.E., Moroz Y.I., Elovaara J. et al. Simplified models of three-phase, five-limb transformer for studying GIC effects. International Journal of Electrical Power & Energy Systems, 2018, vol. 103, pp. 168–175. DOI: 10.1016/j.ijepes.2018.05.035.

Information about the author

Oleg N. Andreev – Post-Graduate Student, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (helga013@yandex.ru; ORCID: https://orcid.org/0000-0003-2974-2502).

Lidia N. Vasileva – Candidate of Pedagogical Sciences, Associate Professor, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (oln2404@mail.ru; ORCID: https://orcid.org/0000-0002-2809-9044).

Evgeniy K. Matveev – Master’s Program Student, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (mzhenyak@yandex.ru).

Aleksandr L. Slavutskiy – Candidate of Technical Sciences, Deputy Head of Software Development Department, Separate Subdivision of Unitel Engineering LLC, Russia, Cheboksary (slavutskii@gmail.com; ORCID: https://orcid.org/0000-0002-6315-2445).

For citations

Andreev O.N., Vasileva L.N., Matveev E.K., Slavutskiy A.L. NUMERICAL AND LABORATORY SIMULATION OF TRANSFORMER SATURATION DEPENDING ON THE INITIAL PHASE OF THE CURRENT. Vestnik Chuvashskogo universiteta, 2023, no. 4, pp. 5–14. DOI: 10.47026/1810-1909-2023-4-5-14 (in Russian).

Download the full article