DOI: 10.47026/1810-1909-2023-4-35-43
УДК [517.954:517.956.225]:514.113.5
ББК [В161.6:В171.4]:В151.0
Aleksandr A. AFANASYEV, Nadezhda N. IVANOVA
Key words
mathematical modeling, partial differential equations of elliptic type, Laplace equation, rectangular parallelepiped, Fourier constants
Abstract
The aim of the study is to solve the boundary value problem for the Laplace equation in a rectangular parallelepiped by the method of separation of variables and to estimate the obtained Fourier variable separation constants.
Materials and methods. Methods of mathematical physics were used to solve the boundary value problem for the Laplace equation. The initial problem was divided into three standard ones, in which the inhomogeneous boundary conditions were given only on two parallel sides, for the rest of the problem they being assumed to be equal to 0.
Results. The boundary value problem for the Laplace equation in a rectangular parallelepiped has been broken down into three problems. Partial solutions to these problems under given boundary conditions have been obtained. The Fourier variable separation constants are estimated.
Findings. The solution to the Laplace’s equation for a parallelepiped is the sum of the solutions to three partial problems. The boundary functions of a parallelepiped are odd periodic over two variable functions whose periods are equal to the lengths of the corresponding sides of the parallelepiped. The Fourier constants of partial solutions to the problem are the coefficients of the expansion of the boundary periodic functions of two variables into a trigonometric Fourier series. In two-dimensional series of the solution to the Laplace’s equation for odd-numbered harmonics and for a set of simultaneously even and odd harmonics, the Fourier constants differ only in signs.
References
- Afanasyev A.A. Metod razdeleniya peremennykh v analiticheskikh raschetakh elektricheskikh mashin [Method of Variable Separation in Analytical Calculations of Electrical Machines]. Cheboksary, Chuvash University Publ., 2022, 278 p.
- Afanasyev A.A. Trekhmernaya analiticheskaya model’ sverkhminiatyurnogo magnitoelektricheskogo ventil’nogo dvigatelya [Three-Dimensional Analytical Model of a Superminiature Permanent Magnet Synchronous Motor]. Elektrotekhnika, 2023, no. 7, pp. 15–21.
- Bogolyubov A.N., Kravtsov V.V. Zadachi po matematicheskoi fizike [Problems in Mathematical Physics]. Moscow, Moscow University Publ., 1998, 350 p.
- Budak B.M., Fomin S.V. Kratnye integraly i ryady [Multiples of integrals and series]. Moscow, Nauka Publ., 1965, 608 p.
- Goloskokov D.P. Uravneniya matematicheskoi fiziki. Reshenie zadach v sisteme Maple [Equations of Mathematical Physics. Problem solving in the Maple system]. St. Petersburg, Piter Publ., 2004, 539 p.
- Zaitsev V.F., Polyanin A.D. Spravochnik po lineinym obyknovennym differentsial’nym uravneniyam [Reference to Linear Ordinary Differential Equations]. Moscow, Faktorial Publ., 1997, 304 p.
- Ivanov-Smolenskii A.V. Elektromagnitnye sily i preobrazovanie energii v elektricheskikh mashinakh [Electromagnetic Forces and Energy Conversion in Electrical Machines]. Moscow, Vysshaya shkola Publ., 1989, 312 p.
- Kuralbaev Z. Reshenie zadachi Koshi dlya differentsial’nogo uravneniya s otritsatel’nym znakom pri starshei proizvodnoi [Solving the Cauchy Problem for a Differential Equation with a Negative Sign at a Senior Derivative]. The Scientific Heritage, 2022, no. 103, pp. 63–66.
- Kovalev S.V. Kompleksnye issledovaniya nauchnykh i tekhnicheskikh problem s primeneniem sovremennoi tekhnologii matematicheskogo modelirovaniya i vychislitel’nogo eksperimenta [Comprehensive Research of Scientific and Technical Problems Uzsing Modern Technology of Mathematical Modeling and Computational Experiment]. Sovremennaya nauka: aktual’nye problemy teorii i praktiki. Ser. Estestvennye i tekhnicheskie nauki, 2019, no. 12, pp. 66–70.
- Pestrikov V.M. Matematicheskie metody v inzhenerii [Mathematical Methods in Engineering]. St. Petersburg, 2023, 158 s.
- Polivanov K.M. Teoreticheskie osnovy elektrotekhniki: v 3 t. T. 3. Teoriya elektromagnitnogo polya [Theoretical Foundations of Electrical Engineering: in 3 vols. Vol. 3: Electromagnetic Field Theory]. Moscow, Energiya Publ., 1969, 352 p.
- Polyanin A.D. Spravochnik po lineinym uravneniyam matematicheskoi fiziki [Handbook of Linear Equations of Mathematical Physics]. Moscow, Fizmatlit Publ., 2001, 576 p.
- Farlow St.J. Partial differential egnations for scientists and engineers. Wileu, 1982 (Russ. ed.: Uravneniya s chastnymi proizvodnymi dlya nauchnykh rabotnikov i inzhenerov. Moscow, Mir Publ., 1985, 384 p.).
- Kholodova S.E., Peregudin S.I. Dopolnitel’nye razdely vysshei matematiki [Additional Sections of Higher Mathematics]. St. Petersburg, 2020, 89 p.
- Abu Arqub O. Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. International Journal of Numerical Methods for Heat & Fluid Flow, 2020, vol. 30, no. 11, pp. 4711–4733.
- Wang F., Zhao Q., Chen Z., Fan C.M. Localized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domains. Applied Mathematics and Computation, 2021, vol. 397, 125903. DOI: 10.1016/j.amc.2020.125903.
Information about the authors
Aleksandr A. Afanasyev – Doctor of Technical Sciences, Professor, Department of Automation and Control in Technical Systems, Chuvash State University, Russia, Cheboksary (afan39@mail.ru).
Nadezhda N. Ivanova – Candidate of Technical Sciences, Associate Professor, Department of Mathematical and Hardware Support of Information Systems, Chuvash State University, Russia, Cheboksary (niva_mail@mail.ru; ORCID: https://orcid.org/0000-0001-7130-8588).
For citations
Afanasyev A.A., Ivanova N.N. SOLUTION OF A MIXED BOUNDARY VALUE PROBLEM FOR THE LAPLACE EQUATION BY THE METHOD OF DIVIDING AN OBJECT IN A RECTANGULAR PARALLELEPIPED. Vestnik Chuvashskogo universiteta, 2023, no. 4, pp. 35–43. DOI: 10.47026/1810-1909-2023-4-35-43 (in Russian).
Download the full article