Главная  /  Vestnik Chuvashskogo universiteta, 2023, no. 4. Topic of this Issue: Technical Sciences  /  Study of the current in the multielectrode plant bath

Study of the current in the multielectrode plant bath

DOI: 10.47026/1810-1909-2023-4-99-108

УДК 621.365.3

ББК 31.292.5

Anatoliy N. IL’GACHEV, Denis G. MIKHADAROV

Key words

ore-thermal furnace, dissymmetric conditions, direct admittances, difference-potential coefficients, bath short-circuit test, bath no-load operation test

Abstract

Active resistance heating multi-electrode ore-thermal furnaces, being in quasi-stationary and transient modes, work in the conditions of electric loop dissymmetry formed by the furnace transformers, current supply and bath caused by the action of different factors of geometric, electromagnetic, thermal and technological character. They worsen the energetic, technological and operational performances. The present methods of studying the electric processes in the furnace loop do not allow in full measure to reveal, consider and eliminate factor actions resulting in phenomena causing electrical duty dissymmetry. Unbalance of the system of currents flowing from the electrode to electrode passing the melt and unbalance of the system of currents flowing directly onto the melt influence the dissymmetry of the furnace loop electrical duty.

The work objective is forming the calculated formulas for determining the resistance heating three-electrode furnace bath “star” and “triangle” currents and by means of them studying the electrode and bath geometrical parameters influence on the mentioned currents.

Materials and methods. The study object is currents flowing in the resistance heating three-phase, three-electrode furnace bath. When carrying out the studies, methods of electrical technology theory and computer mathematic simulation with COMSOL Multiphysics software environment are used.

Results of the study. The study novelty lies in the elaboration of procedure for constructing formulas for calculating the resistance heating three-electrode furnace bath “star” and “triangle” currents with electrode arbitrary location and dissymmetric current system feeding the bath. Influence of the round electrode embedding diameter and the diameter of their dissociation in the three-electrode furnace bath into the currents flowing from the electrode surfaces to the bottom and from the electrode to electrode passing the melt in cases of three-phase symmetric electrode current system and geometrical symmetry of electrode location in the bath is studied.

Findings. Calculation procedure of the resistance heating three-electrode furnace bath “star” and ‘triangle” currents with arbitrary electrode location is developed based on the joint use of the direct admittances and difference-potential coefficients of the equivalent circuits.

References

  1. Grachev A.N., Glukhov N.N. Sposob tekushchego kontrolya simmetrichnosti trekhfaznoi nagruzki v dugovykh ili rudnotermicheskikh elektropechakh [Method of monitoring symmetry of three-phase load in arc or ore-thermal electric furnaces]. Komp’yuternye metody v upravlenii elektrotekhnologicheskimi rezhimami rudnotermicheskikh pechei: doklady -tekhn. soveshch. “Elektrotermiya-98” (2-3 iyunya 1998) [Computer methods in control of ore-thermal furnace electrotechnological modes]. St. Petersburg, 1998, pp. 255–261.
  2. Dantsis Ya.B. Metody elektrotekhnicheskikh raschetov moshchnykh elektropechei [Methods of electrotechnical calculations for powerful electric furnaces]. Leningrad, Energoizdat Publ., 1982, 232 p.
  3. Il’gachev A.N. Chastichnye provodimosti skhemy zameshcheniya elektricheskogo protsessa v vanne elektrodnykh pechei rezistivnogo nagreva [Direct admittances of the electric process equivalent circuit in the resistance heating electrode furnace bath]. Vestnik Chuvashskogo universiteta, 2015, no. 1, pp. 73–80.
  4. Il’gachev A.N. Raznostno-potentsial’nye koeffitsienty kak parametry skhemy zameshcheniya elektricheskogo protsessa v vanne mnogoelektrodnykh pechei [Difference-potential coefficients as parameters of the electric process replacement scheme in the bath of multi-electrode furnaces]. In: Aktual’nye voprosy tekhnicheskikh nauk: materialy III Mezhdunar. nauch. konf. [Proc. of 3rd Sci. Conf. «Topical issues of technical sciences»]. Perm, Merkurii Publ., 2015, pp. 76–79.
  5. Il’gachev A.N. Vliyanie geometricheskikh parametrov elektrodov i vanny dvukhelektrodnoi pechi na ee toki «zvezdy» i «treugol’nika» [Influence of the two-electrode furnace electrode and bath geometric parameters on its “star” and “triangle” currents]. In: Problemy i perspektivy razvitiya energetiki, elektrotekhniki i energoeffektivnosti: sb. materialov V Mezhdunar. nauch.-tekhn. konf. [Proc. of 5th Sci. Conf. «Problems and prospects for the development of energy, electrical engineering and energy efficiency»]. Cheboksary, Chuvash University Publ., 2021, pp. 345–350.
  6. Il’gachev A.N., Mironov Yu.M. Sposob opredeleniya elektricheskikh parametrov, kharakterizuyushchikh sostoyanie podelektrodnykh prostranstv vanny trekhfaznoi trekhelektrodnoi rudnotermicheskoi pechi s raspolozheniem elektrodov v liniyu [Method of determining electric parameters characterizing the state of bath sub-electrode spaces in three-phase three-electrode ore-thermal furnace with in line electrode location]. Patent RF, no. 2595782, 2016.
  7. Markov N.A. Elektricheskie tsepi i rezhimy dugovykh elektropechnykh ustanovok [Electric circuits and modes of electric arc furnace installations], Moscow, Energiya Publ., 1976, 204 p.
  8. Martynov S.A., Bazhin V.Yu. Sostoyanie i perspektivy kontrolya i upravleniya rudnotermicheskimi pechami v proizvodstve metallurgicheskogo kremniya [State and prospects for monitoring and control of ore-thermal furnaces in metallurgical silicon production]. Elektrometallurgiya, 2019, no. 5, pp. 11–16.
  9. Makhoshev A.A., Gavrina O.A., Klyuev R.V. Kompensatsiya reaktivnoi moshchnosti v rudno-termicheskom proizvodstve [Reactive power compensation in ore-thermal production]. Vestnik KRAUNTs. Fiz.-mat. nauki, 2023, vol. 43, no 2, pp. 126–140.
  10. Romanov V.V., Zhivotyagin D.A., Zimin L.S. Elektrotekhnologicheskie ustanovki kak is-tochnik vozniknoveniya nesimmetrichnoi nagruzki seti na proizvodstve. Vozmozhnye resheniya snizheniya nesimmetrii [Electricotechnical plants as a source of appearing asymmetric load in the network at production. Possible solutions to reduce asymmetry]. Sovremennye materialy, elektrotekhnika i elektrotekhnologii, 2017, no. 6(14), pp. 108–112.
  11. Strunskii B.M. Raschety rudnotermicheskikh pechei [Ore-thermal Furnace Calculations]. Moscow, Metallurgiya Publ., 1982, 192 p.
  12. COMSOL Multiphysics – programmnoe obespechenie dlya mul’tifizicheskogo modelirovaniya [COMSOL Multiphysics – Multifysical Modeling Software]. Available at: http://www.comsol.ru (Access Date: 2023, Sept. 10).
  13. MartynovA., Bazhin V.Yu. Improving the management process of the carbothermic reduction of metallurgical silico. In: IOP Coneference Series. Krasnoyarsk, 2019, vol. 537, pp. 1–4.

Information about the authors

Anatoliy N. Il’gachev – Candidate of Technical Sciences, Associate Professor, Russia, Cheboksary (anikil47@mail.ru).

Denis G. Mikhadarov– Candidate of Technical Sciences, Associate Professor, Department of Electrotechnology, Electrical Equipment and Automated Production, Chuvash State University, Russia, Cheboksary (denis_georg@mail.ru).

For citations

Il’gachev A.N., Mikhadarov D.G. STUDY OF THE CURRENT IN THE MULTIELECTRODE PLANT BATH. Vestnik Chuvashskogo universiteta, 2023, no. 4, pp. 99–108. DOI: 10.47026/1810-1909-2023-4-99-108 (in Russian).

Download the full article