Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования «Чувашский государственный университет имени И.Н. Ульянова» (ФГБОУ ВО «ЧГУ им. И.Н. Ульянова»)

ВЫПИСКА ИЗ ПРОТОКОЛА

заседания диссертационного совета Д 212.301.02 по защите диссертаций на соискание ученой степени доктора наук, на соискание ученой степени кандидата наук в удаленном интерактивном режиме

№ 2 от 10 февраля 2022 года

Председатель – председатель диссертационного совета, докт. техн. наук, профессор Белов Г.А. Ученый секретарь – канд. техн. наук, доцент Серебрянников А.В.

Присутствовали: 18 членов из 23 человек, входящих в состав совета, в том числе принимавших участие в удаленном интерактивном режиме 5 человек (явочный лист прилагается)

	• • •	,	-	,
1.	Белов Геннадий Александрович	докт. техн. наук	05.09.12	
2.	Антонов Владислав Иванович	докт. техн. наук	05.14.02	
3.	Серебрянников Александр Владимирович	канд. техн. наук	05.09.12	
4.	Афанасьев Александр Александрович	докт. техн. наук	05.09.12	(удаленно)
5.	Афанасьев Владимир Васильевич	докт. техн. наук	05.09.10	
6.	Булычев Александр Витальевич	докт. техн. наук	05.14.02	
7.	Галанина Наталия Андреевна	докт. техн. наук	05.09.12	
8.	Дмитренко Александр Михайлович	докт. техн. наук	05.14.02	(удаленно)
9.	Кувалдин Александр Борисович	докт. техн. наук	05.09.10	(удаленно)
10.	Лямец Юрий Яковлевич	докт. техн. наук	05.14.02	
11.	Миронова Альвина Николаевна	докт. техн. наук	05.09.10	
12.	Митяшин Никита Петрович	докт. техн. наук	05.09.12	(удаленно)
13.	Михеев Георгий Михайлович	докт. техн. наук	05.09.10	
14.	Мокеев Алексей Владимирович	докт. техн. наук	05.14.02	
15.	Охоткин Григорий Петрович	докт. техн. наук	05.09.12	
16.	Семенов Юрий Матвеевич	докт. физмат. наук	05.09.12	
17.	Славутский Леонид Анатольевич	докт. физмат. наук	05.09.10	
18.	Федотов Александр Иванович	докт. техн. наук	05.14.02	(удаленно)

СЛУШАЛИ: О защите диссертации на соискание ученой степени кандидата технических наук по специальности 05.14.02 — Электрические станции и электроэнергетические системы на тему «Интеллектуальное автоматическое повторное включение линий электропередачи сверхвысокого напряжения с шунтирующими реакторами» Иванова Николая Геннадьевича.

РЕШИЛИ: Присудить Иванову Николаю Геннадьевичу ученую степень кандидата технических наук.

При проведении тайного электронного голосования диссертационный совет в количестве 18 человек (из них принимавших участие в удаленном интерактивном режиме 5 человек), из них 6 докторов наук по специальности 05.14.02 — Электрические станции и электроэнергетические системы, участвовавших в заседании, из 23 человек, входящих в состав совета, дополнительно введены на разовую защиту 0 человек, проголосовали: за -17; против -1.

Председатель заседания, председатель диссертационного совета Д 212.301.02

Белов Г.А.

Ученый секретарь диссертационного совета Д 212.301.02

Серебрянников А.В.

Верно:

Ученый секретарь диссертационного совета Д 212.301.02 Серебрянников А.В.

10.02.2022 г.

ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА Д 212.301.02, созданного на базе федерального государственного бюджетного образовательного учреждения высшего образования «Чувашский государственный университет имени И.Н. Ульянова» Министерства науки и высшего образования Российской Федерации по диссертации на соискание ученой степени кандидата наук

аттестационное дело N_2				
решение диссертационно	ого совета от	10 февраля	ı 2022 г	№ 2

О присуждении Иванову Николаю Геннадьевичу, гражданину Российской Федерации, ученой степени кандидата технических наук.

Диссертация «Интеллектуальное автоматическое повторное включение линий электропередачи сверхвысокого напряжения с шунтирующими реакторами» по специальности 05.14.02 — Электрические станции и электроэнергетические системы (технические науки) принята к защите 26 ноября 2021 г. (протокол заседания № 12) диссертационным советом Д 212.301.02, созданным на базе федерального государственного бюджетного образовательного учреждения высшего образования «Чувашский государственный университет имени И.Н. Ульянова» Министерства науки и высшего образования Российской Федерации, 428015, г. Чебоксары, Московский проспект, д. 15, действующего на основании приказа Министерства образования и науки Российской Федерации от 11.04.2012 г. № 105/нк.

Соискатель Иванов Николай Геннадьевич, 08 декабря 1989 года рождения, в 2021 году окончил аспирантуру федерального государственного бюджетного образовательного учреждения высшего образования «Чувашский государственный университет имени И.Н. Ульянова». В настоящее время работает руководителем группы в обществе с ограниченной ответственностью Научно-производственное предприятие «ЭКРА».

Диссертация выполнена на кафедре теоретических основ электротехники и релейной защиты и автоматики федерального государственного бюджетного образовательного учреждения высшего образования «Чувашский государственный университет имени И.Н. Ульянова» Министерства науки и высшего образования Российской Федерации.

Научный руководитель – доктор технических наук, доцент Антонов Владислав Иванович, профессор кафедры теоретических основ электротехники и релейной за-

щиты и автоматики федерального государственного бюджетного образовательного учреждения высшего образования «Чувашский государственный университет имени И.Н. Ульянова» Министерства науки и высшего образования Российской Федерации.

Официальные оппоненты:

Попов Максим Георгиевич, доктор технических наук, доцент, профессор Высшей школы высоковольтной энергетики Федерального государственного автономного образовательного учреждения высшего образования «Санкт-Петербургский политехнический университет Петра Великого»;

Воронов Павел Ильич, кандидат технических наук, главный эксперт отдела алгоритмического обеспечения Общества с ограниченной ответственностью «РТСофт-Смарт Грид»,

дали положительные отзывы на диссертацию.

Ведущая организация Федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им. Р.Е. Алексеева» (г. Нижний Новгород) в своем положительном отзыве, подписанном Куликовым Александром Леонидовичем, доктором технических наук, профессором, профессором кафедры «Электроэнергетика, электроснабжение и силовая электроника», и Севостьяновым Александром Александровичем, кандидатом технических наук, доцентом, заведующим кафедрой «Электроэнергетика, электроснабжение и силовая электроника», указала, что работа имеет теоретическую и практическую значимость, и дала конкретные рекомендации по использованию результатов и выводов диссертации.

Соискатель имеет 63 опубликованные работы в соавторстве, в том числе по теме диссертации — 27 (21,15 п.л. / авт. вклад 7,29 п.л.), в том числе 5 (4,04 п.л. / авт. вклад 1,7 п.л.) публикаций в изданиях, индексируемых в международных базах данных и системах цитирования (SCOPUS и др.), 3 (2,77 п.л. / авт. вклад 0,63 п.л.) статьи в изданиях из Перечня научных рецензируемых изданий ВАК, 1 патенте РФ на изобретение.

Наиболее значительными работами соискателя являются следующие статьи в рецензируемых научных изданиях, рекомендованных ВАК Минобрнауки России: 1) Ivanov, N. G. Fundamentals of Intelligent Automatic Reclosing of Long-Distance Transmission Lines with Shunt Reactors / N.G. Ivanov, V.A. Naumov, V.I. Antonov [et al.] // Russian Electrical Engineering. — 2019. — Vol. 90, No. 8. — PP. 558-564. (SCOPUS, 0,81/0,5 п.л.). 2) Антонов, В. И. Характеристики методов настройки

адаптивных структурных моделей аварийных сигналов электрической сети / В.И. Антонов, В.А. Наумов, Н.Г. Иванов [и др.] // Релейная защита и автоматизация. — 2017. — № 1. — С. 23-30. (0,92/0,25 п.л.). 3) Антонов, В.И. Общие начала теории фильтров ортогональных составляющих / В.И. Антонов, В.А. Наумов, Н.Г. Иванов [и др.] // Релейная защита и автоматизация. — 2016. — № 1. — С. 14-23. (1,16/0,23 п.л.). 4) Александрова, М.И. Универсальные принципы управляемой коммутации силового электрооборудования / М.И. Александрова, В.А. Наумов, Н.Г. Иванов [и др.] // Релейная защита и автоматизация. — 2019. — №1. — С. 49–54. (0,69/0,15 п.л.). 5) RU 2737047 C1 «Способ автоматического повторного включения ЛЭП с шунтирующими реакторами»; Опубл. 25.11.2020, Бюл. № 33 (0,98/0,35 п.л.).

В диссертации отсутствуют недостоверные сведения об опубликованных соискателем ученой степени работах, в которых изложены основные научные результаты диссертации.

На диссертацию и автореферат поступило 9 положительных отзывов:

- 1) Воропай Николай Иванович, доктор технических наук, профессор, член-корреспондент РАН, научный руководитель ИСЭМ СО РАН (г. Иркутск), замечание: Вернувшаяся отраженная волна, наложившаяся на прямую, повышает опасность перенапряжений. Учитывал ли автор эту проблему?
- 2) Лачугин Владимир Федорович, доктор технических наук, старший научный сотрудник, заместитель начальника отдела промышленной электроники Центра качества электроэнергии АО «НТЦ ФСК ЕЭС» (г. Москва), замечание: Анализ возникающих коммутационных перенапряжений требует учета нелинейных характеристик элементов электрической сети, что в некоторой мере ограничивает возможности примененных в диссертации операторного метода и метода симметричных составляющих.
- 3) Илюшин Павел Владимирович, доктор технических наук, главный научный сотрудник, руководитель Центра интеллектуальных электроэнергетических систем и распределенной энергетики ИНЭИ РАН (г. Москва), замечание: Исследовались ли предложенные способы распознавания на сигналах с близкими частотами, с применением адаптивного структурного анализа на устойчивость к быстрым флуктуациям параметров режима?
- 4) Нагай Владимир Иванович, доктор технических наук, профессор, заведующий кафедрой «Электрические станции и электроэнергетические системы» и Засыпкин Александр Сергеевич, доктор технических наук, профессор, профессор ка-

федры «Электрические станции и электроэнергетические системы» ЮРГПУ(НПИ) (г. Новочеркасск), замечание: Как повлияет предлагаемая интеллектуализация АПВ на расчётную кратность внутренних перенапряжений?

- 5) Никитин Константин Иванович, доктор технических наук, доцент, заведующий кафедрой «Теоретическая и общая электротехника» ОмГТУ (г. Омск), замечание: Учитывается ли время работы выключателя в предыдущих циклах?
- 6) Шуин Владимир Александрович, доктор технических наук, профессор, профессор кафедры «Автоматическое управление электроэнергетическими системами» и Мурзин Андрей Юрьевич, кандидат технических наук, доцент, декан электроэнергетического факультета ИГЭУ (г. Иваново), замечание: Заявлено, что новые способы интеллектуального однофазного и трехфазного автоматического повторного включения превосходят по эффективности и надежности известные способы. Как оценивались эффективность и надежность и где результаты оценок?
- 7) Арцишевский Ян Леонардович, кандидат технических наук, доцент, первый заместитель заведующего кафедрой релейной защиты и автоматизации энергосистем НИУ «МЭИ» (г. Москва), замечание: Постановка задачи интеллектуального АПВ с ограничением перенапряжений правильна, но не полна. Представляется, что эта задача триединая: ограничение перенапряжений, ограничение апериодической составляющей тока и ограничение развивающихся качаний.
- 8) Успенский Михаил Игоревич, кандидат технических наук, старший научный сотрудник, ведущий научный сотрудник лаборатории энергетических систем ФИЦ Коми НЦ УрО РАН (г. Сыктывкар), замечание: Часто довольно сложные алгоритмы по выявлению необходимых условий работы защиты размываются неточностью измерений входных величин. Что сделано в этом плане в диссертации?
- 9) Климова Татьяна Георгиевна, кандидат технических наук, доцент, доцент кафедры релейной защиты и автоматизации энергосистем НИУ «МЭИ», (г. Москва), замечание: Какая требуется точность реализации оптимального момента АПВ для решения задачи минимизации перенапряжений?

Выбор официальных оппонентов и ведущей организации обосновывается тем, что доктор технических наук Попов Максим Георгиевич и кандидат технических наук Воронов Павел Ильич являются известными и компетентными учеными по специальности 05.14.02 — Электрические станции и электроэнергетические системы, имеют публикации по специальности 05.14.02 в области релейной защиты

и автоматики электрических сетей, в том числе переходных процессов в линиях электропередачи и обработки сигналов, имеют публикации в научных журналах из перечня ВАК, а Федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им. Р.Е. Алексеева» широко известно своими научными достижениями в электроэнергетической отрасли, в том числе по релейной защите и автоматике электрических сетей, моделированию режимов электрических сетей, разработке алгоритмов функционирования устройств релейной защиты и автоматики и способно оценить научную и практическую ценность диссертации.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований: разработана новая методика анализа переходных процессов при автоматическом повторном включении линий электропередачи сверхвысокого напряжения с шунтирующими реакторами, обладающая универсальностью учета свободного процесса в линии в паузе цикла автоматического повторного включения; предложены новые интеллектуальные алгоритмы однофазного и трехфазного автоматического повторного включения линии электропередачи сверхвысокого напряжения с шунтирующими реакторами, обеспечивающие лучшую эффективность снижения коммутационных перенапряжений и надежность по сравнению с известными способами; доказано, что метод включения линии электропередачи в момент перехода кривой напряжения на контактах выключателя через нуль, расположенный в окрестности минимума огибающей оптимален с точки зрения смягчения перенапряжений в сети; введены новые принципы совместной цифровой обработки сигналов переходного режима многофазной электрической сети.

Теоретическая значимость исследования обоснована тем, что: доказаны теоретические положения, обосновывающие применение новых методов интеллектуального автоматического повторного включения линии электропередачи сверхвысокого напряжения с шунтирующими реакторами для смягчения коммутационных перенапряжений; применительно к проблематике диссертации результативно (эффективно, то есть с получением обладающих новизной результатов) использован комплекс существующих методов исследования, в том числе методов теории электромагнитных переходных процессов в электрических цепях, теории математического моделирования электрических систем и теории цифровой обработки сигналов; изложены теоретические основы метода совместной обработки многокомпонентных сигналов пере-

ходного режима многофазной электрической системы, развивающего теорию адаптивного структурного анализа сигналов; раскрыты механизмы повышения разрешающей способности методов адаптивного структурного анализа при распознавании сигналов переходного процесса благодаря скрупулезному учету особенностей протекания процесса в электрической системе; изучены зависимости уровней перенапряжений при включении линии от используемой стратегии управляемой коммутации; проведена модернизация алгоритмов интеллектуального автоматического повторного включения линии электропередачи сверхвысокого напряжения с шунтирующими реакторами, гарантирующих высокую точность момента включения.

Значение полученных соискателем результатов исследования для практики подтверждается тем, что: разработаны и внедрены способы интеллектуального однофазного и трехфазного автоматического повторного включения линий электропередачи сверхвысокого напряжения с шунтирующими реакторами в выпускаемом НПП «ЭКРА» устройстве интеллектуального автоматического повторного включения; определены класс напряжения и вид электрических сетей для практического внедрения разработок диссертационного исследования; созданы методические основы практического применения новых алгоритмов интеллектуального автоматического повторного включения для коммутации линий электропередачи сверхвысокого напряжения с шунтирующими реакторами; представлены рекомендации по применению новых алгоритмов цифровой обработки сигналов переходного режима в различных устройствах релейной защиты и автоматики для обеспечения точности и быстродействия распознавания сигналов.

Оценка достоверности результатов исследования выявила: для экспериментальных работ результаты получены с использованием признанных в отрасли комплексов моделирования процессов в электроэнергетических системах и при адекватно заданных условиях моделирования; теория построена на известных, проверяемых данных и фактах, законах электротехники, методах математического моделирования и цифровой обработки сигналов, и полностью согласуется с опубликованными экспериментальными данными по теме диссертации; идеи базируются на анализе передового опыта разработки и применения технологии интеллектуального автоматического повторного включения линий электропередачи сверхвысокого напряжения с шунтирующими реакторами; использованы сведения, полученные ранее по рассматриваемой тематике и показано их соответствие результатам, полученным автором; установлено со-

ответствие результатов диссертационного исследования с результатами, представленными в независимых источниках по данной тематике; **использованы** современные методики сбора и обработки исходной информации, передовые программные продукты и методы математического моделирования.

Личный вклад соискателя состоит в непосредственном выполнении всех этапов работы над диссертацией: определение цели и постановка задачи исследования; поиск и анализ информации; разработка моделей и исследование особенностей процессов в линии электропередачи на разных стадиях цикла автоматического повторного включения; разработка новых способов однофазного и трехфазного интеллектуального автоматического повторного включения и способов цифровой обработки сигналов для устройства интеллектуального автоматического повторного включения; внедрение полученных результатов в устройство интеллектуального автоматического повторного включения на базе микропроцессорного терминала релейной защиты и автоматики; подготовка публикаций по выполненной работе.

В ходе защиты диссертации критических замечаний высказано не было. Со-искатель Иванов Н.Г. ответил на задаваемые ему в ходе заседания вопросы.

На заседании 10 февраля 2022 года диссертационный совет принял решение за новые научно-обоснованные технические решения в области автоматики электроэнергетических систем, имеющие существенное значение для развития страны, присудить Иванову Н.Г. ученую степень кандидата технических наук.

При проведении тайного электронного голосования диссертационный совет в количестве 18 человек (из них принимавших участие в удаленном интерактивном режиме 5 человек), из них 6 докторов наук по специальности 05.14.02 — Электрические станции и электроэнергетические системы, участвовавших в заседании, из 23 человек, входящих в состав совета, дополнительно введены на разовую защиту 0 человек, проголосовали: за — 17; против — 1.

Председатель диссертационного совета, доктор технических наук, профессор

Белов Геннадий Александрович

Ученый секретарь диссертационного совета кандидат технических наук, доцент

Серебрянников Александр Владимирович

10 февраля 2022 г.