Минобрнауки России

Федеральное государственное бюджетное образовательное учреждение высшего образования «Чувашский государственный университет имени И.Н. Ульянова» (ФГБОУ ВО «ЧГУ им. И.Н. Ульянова»)

ВЫПИСКА ИЗ ПРОТОКОЛА

заседания диссертационного совета Д 212.301.02 по защите диссертаций на соискание ученой степени доктора наук, на соискание ученой степени кандидата наук в удаленном интерактивном режиме

№ 22 от 30 июня 2022 года

Председатель – председатель диссертационного совета, докт. техн. наук, профессор Белов Г.А. Ученый секретарь – канд. техн. наук, доцент Серебрянников А.В.

Присутствовали: 17 членов из 22 человек, входящих в состав совета, в том числе принимавших участие в удаленном интерактивном режиме 3 человека (явочный лист прилагается)

1.	Белов Геннадий Александрович	докт. техн. наук	05.09.12	
2.	Антонов Владислав Иванович	докт. техн. наук	05.14.02	
3.	Серебрянников Александр Владимирович	канд. техн. наук	05.09.12	
4.	Афанасьев Александр Александрович	докт. техн. наук	05.09.12	
5.	Афанасьев Владимир Васильевич	докт. техн. наук	05.09.10	
6.	Галанина Наталия Андреевна	докт. техн. наук	05.09.12	
7.	Дмитренко Александр Михайлович	докт. техн. наук	05.14.02	
8.	Кувалдин Александр Борисович	докт. техн. наук	05.09.10	(удаленно)
9.	Лямец Юрий Яковлевич	докт. техн. наук	05.14.02	
10.	Миронова Альвина Николаевна	докт. техн. наук	05.09.10	
11.	Митяшин Никита Петрович	докт. техн. наук	05.09.12	(удаленно)
12.	Михеев Георгий Михайлович	докт. техн. наук	05.09.10	
13.	Мокеев Алексей Владимирович	докт. техн. наук	05.14.02	(удаленно)
14.	Охоткин Григорий Петрович	докт. техн. наук	05.09.12	
15.	Петров Михаил Васильевич	докт. техн. наук	05.09.10	
16.	Семенов Юрий Матвеевич	докт. физмат. наук	05.09.12	
17.	Славутский Леонид Анатольевич	докт. физмат. наук	05.09.10	

СЛУШАЛИ: О защите диссертации на соискание ученой степени кандидата технических наук по специальности 05.14.02 — Электрические станции и электроэнергетические системы на тему «Повышение эффективности дальнего резервирования защит до 1000 В» Соловьевой Светланы Николаевны.

РЕШИЛИ: Присудить Соловьевой Светлане Николаевне ученую степень кандидата технических наук.

При проведении тайного электронного голосования диссертационный совет в количестве 17 человек (из них принимавших участие в удаленном интерактивном режиме 3 человека), из них 4 доктора наук по специальности 05.14.02 — Электрические станции и электроэнергетические системы, участвовавших в заседании, из 22 человек, входящих в состав совета, дополнительно введены на разовую защиту 0 человек, проголосовали: 3a-17; против -0.

Председатель заседания, председатель диссертационного совета Д 212.301.02

Белов Г.А.

Ученый секретарь диссертационного совета Д 212.301.02

Серебрянников А.В.

Верно:

Ученый секретарь диссертационного совета Д 212.301.02

Серебрянников А.В.

30.06.2022 г.

ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА Д 212.301.02, созданного на базе федерального государственного бюджетного образовательного учреждения высшего образования «Чувашский государственный университет имени И.Н. Ульянова» Министерства науки и высшего образования Российской Федерации по диссертации на соискание ученой степени кандидата наук

аттестационное дело №	
решение лиссертационно	ого совета от 30 июня 2022 г. № 22

О присуждении Соловьевой Светлане Николаевне, гражданке Российской Федерации, ученой степени кандидата технических наук.

Диссертация «Повышение эффективности дальнего резервирования защит до 1000 В» по специальности 05.14.02 — Электрические станции и электроэнергетические системы (технические науки) принята к защите 18 марта 2022 г., протокол № 13, диссертационным советом Д 212.301.02 на базе федерального государственного бюджетного образовательного учреждения высшего образования «Чувашский государственный университет имени И.Н. Ульянова» Министерства науки и высшего образования Российской Федерации, 428015, г. Чебоксары, Московский проспект, д. 15, действующего на основании приказа Министерства образования и науки Российской Федерации от 11.04.2012 г. № 105/нк.

Соискатель Соловьева Светлана Николаевна, 15 апреля 1983 года рождения, в 2006 году окончила государственное образовательное учреждение высшего профессионального образования «Псковский государственный политехнический институт» по специальности «Электроснабжение». С 2006 по 2009 год обучалась в аспирантуре федерального государственного автономного образовательного учреждения высшего образования «Санкт-Петербургский политехнический университет Петра Великого» по специальности 05.14.02 — Электрические станции и электроэнергетические системы (технические науки), работает старшим преподавателем Высшей школы высоковольтной энергетики федерального государственного автономного образовательного учреждения высшего образования «Санкт-Петербургский политехнический университет Петра Великого».

Диссертация выполнена в Высшей школе высоковольтной энергетики феде-

рального государственного автономного образовательного учреждения высшего образования «Санкт-Петербургский политехнический университет Петра Великого» Министерства науки и высшего образования Российской Федерации.

Научный руководитель — Попов Максим Георгиевич, доктор технических наук, доцент, профессор Высшей школы высоковольтной энергетики федерального государственного автономного образовательного учреждения высшего образования «Санкт-Петербургский политехнический университет Петра Великого» Министерства науки и высшего образования Российской Федерации.

Официальные оппоненты:

Нагай Владимир Иванович — доктор технических наук, профессор, заведующий кафедрой «Электрические станции и электроэнергетические системы» Федерального государственного бюджетного образовательного учреждения высшего образования «Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова»,

Петров Владимир Сергеевич – кандидат технических наук, руководитель группы департамента автоматизации энергосистем Общества с ограниченной ответственностью Научно-производственное предприятие «ЭКРА»,

дали положительные отзывы на диссертацию.

Ведущая организация — Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет имени В.И. Ленина», г. Иваново, в своем положительном заключении, подписанном заведующим кафедрой «Автоматическое управление электроэнергетическими системами», кандидатом технических наук, доцентом Лебедевым Владимиром Дмитриевичем, и утвержденном проректором по научной работе, доктором технических наук, профессором Тютиковым Владимиром Валентиновичем, указала, что работа имеет теоретическую и практическую значимость, и дала положительный отзыв на диссертацию.

Соискатель имеет 12 опубликованных работ в соавторстве и без соавторства, в том числе по теме диссертации — 12 (3,85 п.л. / авт. вклад 1,68 п.л.), в том числе 3 (1,44 п.л. / авт. вклад 0,48 п.л.) статей в изданиях из Перечня научных рецензируемых изданий ВАК, 1 свидетельство о регистрации программы для ЭВМ.

Наиболее значительными работами соискателя являются следующие статьи в рецензируемых научных изданиях, рекомендованных ВАК Минобрнауки Рос-

сии: 1) Соловьёва С.Н. Влияние расположения расчётной точки короткого замыкания на условия нагрева кабелей 0,4 кВ при реализации дальнего резервирования / А.А. Лапидус, С.Н. Соловьёва // Энергобезопасность и энергосбережение. — 2010. — № 5. — С. 8—13. (0,38 п.л. / 0,19 п.л.). 2) Соловьёва С.Н. Анализ термического действия токов короткого замыкания в кабельных линиях напряжением 0,4 кВ в зависимости от места повреждения / А.А. Лапидус, С.Н. Соловьёва // Научнотехнические ведомости Санкт-Петербургского государственного политехнического университета. — 2011. — № 3 (130). — С 46—50. (0,31 п.л. / 0,16 п.л.). 3) Соловьева С.Н. Повышение эффективности защит дальнего резервирования в распределительных сетях электроснабжения до 1 кВ / М.Г. Попов, С.Н. Соловьева, А.А. Лапидус [и др.] // Вестник Чувашского университета. — 2020. — № 1. — С. 155—166. (0,75 п.л. / 0,13 п.л.). 4) Заявка № 2020667006. Свидетельство о государственной регистрации программы для ЭВМ «Программа для расчёта температур нагрева кабелей в сетях напряжением до 1 кВ» № 2020667567 / С.Н. Соловьева, А.А. Лапидус. — Зарегистрирована в Реестре программ для ЭВМ 24.12.2020.

В диссертации отсутствуют недостоверные сведения об опубликованных соискателем ученой степени работах, в которых изложены основные научные результаты диссертации.

На диссертацию и автореферат поступило 10 положительных отзывов со следующими вопросами и замечаниями:

- 1) Бессолицын Алексей Витальевич, кандидат технических наук, доцент кафедры электрических станций, Новиков Алексей Викторович, кандидат технических наук, доцент, заведующий кафедрой электрических станций ФГБОУ ВО «Вятский государственный университет» (г. Киров), замечания: Из описания дифференциального уравнения (1) на стр. 13 не вполне понятно, учитывалось ли неравномерное распределение по сечению жилы кабеля плотности тока из-за влияния скин-эффекта и эффекта близости. Насколько рекомендации, сделанные по результатам проведенных исследований по оценке чувствительности в четвертой главе диссертации, будут применимы в случае другой схемы соединения обмоток питающего трансформатора? Возможно ли использование предлагаемого программного продукта для рассмотрения случаев последовательного включения кабелей разных типов с разными сечениями или материалами токоведущих жил?
 - 2) Зеленин Александр Сергеевич, кандидат технических наук, старший

научный сотрудник отдела системных исследований АО «НТЦ ЕЭС» (г. Санкт-Петербург), замечания: Учитывался ли при расчете нагрева, сопротивления элементов эффект поверхностного вытеснения тока? Каково его влияние на исследуемый процесс нагрева? Оценивалась ли погрешность предложенного подхода? Как выполнялось определение сопротивления кабеля с учетом неодинаковости температуры слоев?

- 3) Успенский Михаил Игоревич, кандидат технических наук, старший научный сотрудник, ведущий научный сотрудник лаборатории энергетических систем ИСЭ и ЭПС ФГБУН ФИЦ «Коми НЦ УрО РАН» (г. Сыктывкар), замечания: Как выполняется корректировка при прокладке кабеля вне помещения и с учетом сезона? Что сделано автором в плане экономической оптимизации?
- 4) Чижков Константин Германович, главный инженер электротехнического управления АО «Атомэнергопроект» (г. Санкт-Петербург), замечания: Какой из способов учета переходных сопротивлений в цепи КЗ использован автором в предложенной методике? Производилась ли оценка коэффициентов чувствительности защит?
- 5) Меркурьев Андрей Геннадиевич, кандидат технических наук, генеральный директор НОУЧ ДПО «ЦПКЭ» (г. Санкт-Петербург), замечание: В каком случае целесообразен переход на вычисление действующего значения периодической составляющей тока КЗ?
- 6) Зоринец Валентин Витальевич, кандидат технических наук, доцент, заведующий кафедрой Электротехники и электроники МИЭЭ (г. Москва), замечание: Учитывался ли режим нейтрали трансформатора при разработке программного комплекса? В автореферате представлен только алгоритм расчета нагрева проводника по мгновенным значениям тока.
- 7) Мешалкин Дмитрий Анатольевич, кандидат технических наук, старший научный сотрудник, старший научный сотрудник ФГУП «ВНИИМ им. Д.И. Менделеева» (г. Санкт-Петербург), замечания: Проводилась ли оценка погрешностей результатов расчета по указанным методикам? Проводилась ли верификация результатов расчетов, выполняемых разработанным программным комплексом, и их сравнение с результатами измерения в реальной системе электроснабжения?
- 8) Васильева Ольга Алексеевна, кандидат технических наук, доцент, генеральный директор ЗАО «Алгоритм» (г. Санкт-Петербург), замечания: Останутся

ли справедливыми приведенные выводы и рекомендации в случае применения номинального напряжения 0,69 кВ вместо 0,4 кВ? Есть ли необходимость детального учета изменения активных сопротивлений остальных элементов цепи короткого замыкания?

- 9) Шахова Мария Алексеевна, кандидат технических наук, директор центра обучения ЗАО «ТИМ-Р» (г. Санкт-Петербург), замечания: Можно ли адаптировать выводы работы к выбору параметров срабатывания дифференциальных автоматических выключателей? Позволяет ли разработанный программный комплекс осуществить учет улучшенных показателей пожарной безопасности кабельной продукции?
- 10) Козырев Игорь Николаевич, кандидат технических наук, доцент, доцент кафедры «Электроэнергетика, электропривод и системы автоматизации» ФГБОУ ВО «Псковский государственный университет» (г. Псков), замечания: Каково влияние постоянной времени нагрева проводника на полученные зависимости?

Выбор официальных оппонентов и ведущей организации обосновывается тем, что доктор технических наук Нагай Владимир Иванович и кандидат технических наук Петров Владимир Сергеевич являются известными и компетентными учеными по специальности 05.14.02 — Электрические станции и электроэнергетические системы, имеют публикации по специальности 05.14.02 в области совершенствования защит и автоматики в научных журналах из перечня ВАК, а федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет имени В.И. Ленина» является учреждением высшего образования, широко известным своими научными достижениями в электроэнергетической отрасли, в том числе по моделированию электротепловых процессов в электрических сетях, а также разработке алгоритмов резервирования защит, способными определить научную и практическую ценность диссертации.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований: разработаны новые методы и алгоритмы расчета токов короткого замыкания и температур нагрева кабелей до 1 кВ; предложена уточненная нелинейная математическая модель электротеплового процесса в кабеле; доказано, что для повышения эффективности дальнего резервирования защит до 1000 В актуально применение методов, основанных на изменении структуры схе-

мы электроснабжения; введены новые расчетные условия определения наиболее опасных тепловых импульсов.

Теоретическая значимость исследования обоснована тем, что: доказаны свойства и особенности параметров сети, влияющие вид повреждения, приводящего к максимальному тепловому воздействию тока КЗ; использован комплекс существующих методов исследования, в том числе методы математического моделирования, теоретических основ электротехники, теории электрических и электромеханических переходных процессов в электроэнергетической системе; изложены условия, влияющие на обеспечение дальнего резервирования защит низковольтных сетей; раскрыты некоторые ограничения существующих методов расчета токов КЗ и температур нагрева кабелей до 1 кВ; изучены влияния особенностей сетей до 1 кВ (теплового спада тока, электрической дуги, неадиабатического характера нагрева) на конечную температуру нагрева кабеля при оценке его на невозгорание; проведена модернизация алгоритмов расчета токов КЗ и его термического воздействия на проводник.

Значение полученных соискателем результатов исследования для практики подтверждается тем, что: разработаны и внедрены алгоритмы расчета токов КЗ и температур нагрева кабелей при разных видах повреждений; определены критерии проверки по условиям чувствительности защитных аппаратов и кабельных линий по условиям термической стойкости и невозгораемости; создана система практических рекомендаций по улучшению условий дальнего резервирования сетей до 1000 В; представлены предложения по схемотехническим решениям повышения эффективности дальнего резервирования защит сетей до 1 кВ.

Оценка достоверности результатов исследования выявила: для экспериментальных работ результаты получены с использованием разработанного и прошедшего сертификацию программного комплекса; теория построена на известных, проверяемых данных и фактах, законах электротехники, методах математического моделирования, согласуется с опубликованными данными по теме диссертации; идея базируется на анализе практики и обобщении передового опыта по обеспечению надежного дальнего резервирования защит сетей до 1 кВ; использовано сравнение авторских результатов расчета температур нагрева кабелей по предложенной методике с данными, полученными по рассматриваемой тема-

тике ранее; установлено соответствие подходов, используемых автором, базовым принципам теоретических основ электротехники; использованы современные методики сбора и обработки исходной информации, передовые программные продукты и методы математического моделирования.

Личный вклад соискателя состоит в непосредственном выполнении всех этапов работы над диссертацией: определении цели и постановке задачи исследования; поиске и анализе информации; разработке математических моделей и анализе результатов; развитии новых методов расчета токов короткого замыкания и температур нагрева кабелей при всех видах повреждений, проведении расчетных исследований с последующей обработкой и анализом результатов; внедрении полученных результатов; подготовке основных публикаций.

В ходе защиты диссертации критических замечаний высказано не было. Со-искатель Соловьева С.Н. ответила на задаваемые ей в ходе заседания вопросы.

На заседании 30 июня 2022 г. диссертационный совет принял решение за новые научно-обоснованные технические решения в области дальнего резервирования защит до 1 кВ, имеющие существенное значение для ее развития, присудить Соловьевой Светлане Николаевне ученую степень кандидата технических наук.

При проведении тайного электронного голосования диссертационный совет в количестве 17 человек (из них принимавших участие в удаленном интерактивном режиме 3 человека), из них 4 доктора наук по специальности 05.14.02 — Электрические станции и электроэнергетические системы (технические науки), участвовавших в заседании, из 22 человек, входящих в состав совета, дополнительно введены на разовую защиту 0 человек, проголосовали: за — 17; против — 0.

Председатель диссертационного совета, доктор технических наук, профессор

Белов Геннадий Александрович

Ученый секретарь диссертационного совета кандидат технических наук, доцент

Серебрянников Александр Владимирович

30 июня 2022 г.